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PREFACE 

This book was written based on original material from Master’s level courses for 
scientists and engineers. Given the lack of elementary texts on the subject, especial-
ly in the French language of the original edition, it was intended as an introduction 
to superconductivity accessible to beginning graduate students or advanced under-
graduates. We wished to make a textbook where simple approaches were preferred, 
assumptions clearly stated, and calculations given in sufficient detail to be followed 
with ease. A number of the applications of electromagnetism, thermodynamics or 
quantum physics can make for stimulating exercises for science and engineering 
students. 

In view of the vast state of knowledge of the subject nowadays, this volume can  
only be an introduction. Other titles in preparation: Supraconductivité - Matériaux 
et applications and Supraconductivité conventionelle et non-conventionelle1 should 
bring both a broader and a more specialized view of the current state of supercon-
ductivity. 

The contents of this book have benefitted from the expert advice of our many  
colleagues in the Jean Lamour Institute in Nancy, of the Léon Brillouin Laboratory in 
Saclay and the the French Center for Atomic and Alternative Energies (CEA). The 
review panel: Jean-Pascal BRISON, Hervé COURTOIS, Thierry KLEIN, Jérôme  
LESUEUR, Stephane PAILHÈS, Pierre VEDRINE and Georges WAYSAND, brought 
crucial insight to the content of several chapters. The great pedagogue, José 
TEIXEIRA, re-read the work in great detail and greatly improved the explanation of 
several delicate issues. 

H. COURTOIS, P. DUBOS, C. GOURDON, V. JEUDY, T. KLEIN, B. PANNETIER,  
A. PAUTRAT, D. RODITCHEV and J.C. VILLEGIER generously gave us much appre-
ciated advice and were kind enough to allow us to use illustrations from their origi-
nal publications. 

The staff of Grenoble Sciences directed by Jean BORNAREL encouraged and stimu-
lated us and did much to create an environment favoring a work of high quality. 
Laura CAPOLO, Sylvie BORDAGE and Anne-Laure PASSAVANT have, with much 
patience and good humour produced a remarkably elegant manuscript with careful 
attention to type-setting and to the thousand details that are so important for a  
beginning reader. 

                                                        
1 Materials and Application and Conventional and Unconventional Superconductivity 



The Fondation Mines Nancy generously funded this translation of the original french 
edition. 

We extend our heartfelt thanks to all of the above. 

We would also like to express our warmest thanks to Dr Timothy ZIMAN of the Ins-
titut Laue-Langevin, Grenoble, who kindly accepted to translate the French version 
into English. Being an eminent theoretical physicist himself, Tim went far beyond 
providing a simple translation, making precious comments resulting in an optimal 
presentation of the work. It was indeed a real pleasure to work with Tim during the 
period of the translation. 

Finally, we would like to make a special mention of the students who followed our 
courses which lead to this book. Their enthusiasm, the many questions they asked, 
and the comments they made, were the primary motivation to complete this work. 

Philippe MANGIN 
Emeritus Professor at the Mines Nancy Graduate School - Lorraine University 

Nanomagnetism and Spintronics research group - Jean Lamour Institute 
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Retired senior research scientist at the CEA-Saclay 
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Chapter 1

INTRODUCTION

1.1 - A history of women and men

Since its discovery in 1911, the history of superconductivity is perhaps one of the 
most exciting adventures in physics. It was directly responsible for no fewer than 
 ve NOBEL prizes:

Heike Kamerlingh ONNES, for the discovery of the phenomenon (1913), John 
BARDEEN, Leon COOPER and Robert SCHRIEFFER, who provided a microscopic 
theory (1972), Brian JOSEPHSON and Ivar GIAEVER, whose theoretical and experi-
mental contributions showed effects of quantum coherence and tunnelling (1973), 
Alex MÜLLER and Johannes Georg BEDNORZ, for the discovery of high temperature 
superconductors (1987), and Alexei ABRIKOSOV and Vitaly GINZBURG for their ex-
tensive work on type II superconductors and the physics of vortices (2003).
Less directly, we can note other winners of this prestigious award who made ma-
jor contributions to the subject, such as Lev LANDAU (1962), Philip Warren 
ANDERSON (1967), Pierre-Gilles DE GENNES (1991) and John Michael KOSTERLITZ 
(2016) and David THOULESS (2016). Besides them, many famous physicists and 
chemists left their trace in the story. We can cite Walther MEISSNER and Robert 
OCHSENFELD, the brothers Fritz and Heinz LONDON, Brian PIPPARD, Bern MATTHIAS, 
Herbert FRÖHLICH, Paul CHU, all of whose names which will come back to us in this 
book. Finally, numerous women and men have devoted time and enthusiasm to the 
subject in the past, and continue to do so to this day.
As for the future, it is more than probable that the list of winners will be joined by 
whoever explains convincingly the mechanisms of what is termed “high-tempera-
ture” (High-Tc) superconductivity, or who may discover new materials with critical 
temperature close to, or even higher than, room temperature.

1.2 - Experimental signs of superconductivity

1.2.1 - The discovery of superconductivity: the critical temperature

The story begins in Leiden in Holland in the  rst decade of the 20th century. The re-
search group of H.K. ONNES was unique in having both an almost industrial level of 
the apparatus needed for the liquefaction of oxygen and, subsequently, of hydrogen,

1© Springer International Publishing AG 2017
P. Mangin and R. Kahn, Superconductivity, 
DOI 10.1007/978-3-319-50527-5_1



2 SUPERCONDUCTIVITY

and to have suf  cient quantities of helium 1 to be able to liq-
uify that as well. He succeeded on July 10th, 1908 and was 
then able to make experiments down to a temperature of 1 K.
H.K. ONNES chose to attack one of the great problems 
that interested the physics community of that age: what is 
the behavior of the electrical resistance of metals when we 
approach absolute zero? Does it tend to vanish because of 
the disappearance of thermal noise? Does it increase be-
cause of the localization of free electrons? Does it approach 
some limiting value determined by impurities, as Augustus 
MATTHIESSEN had already predicted?

In this project, Gilles HOLST, a student of Heike Kamerlingh 
ONNES, was given the job of measuring the electrical resistiv-
ity of mercury, which can easily be puri  ed by distillation. The 
measurements were communicated on April 28, 1911 in a short 
note to the Royal Academy of the Netherlands. It announced 
“with all reservations” that the resistivity of mercury apparent-
ly disappears just above 4 K. Superconductivity had just been 
discovered in its most spectacular form: the total disappear-
ance of electrical resistivity. The resistivity of the metal does 
not become weak or even very weak, it becomes strictly zero.
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0
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Tc  4.2 K
R  10 5 

Mercury
superconducting
transition
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Figure 1.1
The historical evidence showing 
superconductivity

The original fi gure showing that mercury 
loses its resistivity at a temperature just 
below 4.2 K was published by H. K. ONNES 2

In this new state of matter, it is possible to make a current  ow in a closed circuit, 
without any generator (other than brie  y to set the electrons in motion). Once started,
the electrons  ow inde  nitely with constant speed. At this stage, the  rst quantity 
characterizing a superconducting material is the transition temperature Tc (the criti-
cal temperature) between the normal and superconducting states.

1 He brought it from North Carolina in the United States, where the bulk of the world’s 
supplies were to be found at that time.

Heike Kamerlingh ONNES

Gilles HOLST
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1.2.2 - The magnetic behavior of superconductors

If the drop to zero of the electrical resistivity of superconductors is the most spec-
tacular phenomenon, their response to a magnetic  eld was just as unexpected and 
has turned out to be particularly rich in consequences.

The MEISSNER-OCHSENFELD eff ect

In 1933, in Berlin, Walther MEISSNER 
and Robert OCHSENFELD showed that 
magnetic  eld B is “expelled” from 
superconductors, that is to say that 
when subjected to an external mag-
netic  eld, they divert the  eld lines 
so that the magnetic  eld vanishes 
inside 2. The superconducting mate-
rial behaves as a perfect diamagnet. 3

Critical fi elds and superconductors of types I and II

Very early on, magnetization measurements showed that the superconducting phase 
existed in a limited range, not only of temperature but also of magnetic  eld. After 
much confusion and con  icting experimental results it was  nally the theoretical 
analysis of A. ABRIKOSOV 4 in 1957 that showed that superconductivity can disap-
pear via two distinct scenarios, thus leading to the classi  cation of superconducting 
materials into those of type I and of type II.

In a superconductor of type I, the superconductivity vanishes abruptly at a critical 
value Hc of the  eld. Hc is always small, with 0 Hc no more than 0.1 tesla. Only pure 
elemental superconductors (with a few exceptions, such as Niobium), are of type I.

In a type II superconductor, there is no discontinuity to be seen, but rather a gradual 
weakening of the magnetic response starting from a lower critical magnetic  eld Hc1. 
Complete suppression of superconductivity occurs only when the  eld reaches an 
upper critical value Hc2 which can be very high ( 0 Hc2 may be several tens of, or 
even a hundred, teslas). Superconducting compounds and alloys are all of type II.

1.2.3 - Critical current

As well as the temperature and magnetic  eld, a  nite density of electrical current 
also destroys superconductivity when it exceeds some critical value. We shall see 

2 W. MEISSNER, R. OCHSENFELD (1933) Naturwissenschaffen 21, 787.
3 W. MEISSNER and R. OCHSENFELD interpreted their result as seeing “a possible anal-

ogy to ferromagnetism”; this will be taken up by the LONDON brothers. It is true that 
W. HEISENBERG had just provided a “microscopic” quantum theory based on interactions 
between the spins of closely neighbouring electrons.

4 A.A. ABRIKOSOV (1957) Sov. Phys. JETP 5, 1974.

Walther MEISSNER
Robert OCHSENFELD
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that in type I superconductors, the critical current density is intrinsically related to 
the  eld Hc, while in type II superconductors the critical current depends strongly 
on the metallurgy and, more generally, on the microstructure of the material. The 
mechanisms determining the critical currents are very different in the two types of 
superconductor. We note that wires of Nb-Ti (the type II superconducting alloy most 
used in the manufacture of magnets) can survive current densities of 1000, even 
5000 A mm 2, without generating any heat.

1.2.4 - The isotope eff ect 5

This is a more discrete effect, which could have passed unnoticed, but fundamental 
to the understanding of superconductivity: for a given material it was noticed that 
the transition temperature Tc is linear in the inverse of the square root of the atomic 
mass. This observation shows that it is not only the electronic structure that is to be 
considered, but that atomic vibrations, whose frequency is inversely proportional to 
the square root of the atomic mass, are actively involved.

1.2.5 - JOSEPHSON currents and fl ux quantization

The very speci  c nature of the superconducting state appeared 
without question in 1962 in a paper by Brian JOSEPHSON 
which shocked the scienti  c community; 6 according to this 
brilliant young thesis student, an electrical current may  ow 
between two bulk superconductors separated by a thin insu-
lating layer, even when there is no potential difference be-
tween the two. Even more surprising, his theory predicted 
that applying a constant potential leads to the appearance of 
an alternating current between the two superconductors.

These predictions, based on a kind of BOSE condensation of the superconducting 
charges and on the  xing of the phases of the associated wave-functions, were imme-
diately con  rmed by experiment. Formation of a macroscopic 
quantum state, which implies quanti  cation of the magnetic 
 eld  ux, is the basis of the development of an ultra-sensitive 

technique for measuring magnetic  elds (SQUID) as well as a 
multitude of other subtle effects.

Ivar GIAEVER demonstrated the existence of a tunnelling effect 
between a superconductor and a normal metal separated by a 
thin insulating barrier.

5 Isotope Effect: The transition temperature Tc depends on the isotope, i.e. on the atomic 
mass. Now the mass determines the vibrational frequency of the atomic lattice.

6 B.D. JOSEPHSON (1962) Phys. Lett. 1, 251.

Brian JOSEPHSON

Ivar GIAEVER
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1.3 - Phenomenological models

Despite its spectacular features, superconductivity proved to be one of the most dif  -
cult problems that the physicists of the  rst half of the 20th century had to deal with. 
The community had to wait 44 years (1911-1955) before  nally a satisfactory theory 
(BCS) was published by John BARDEEN, Leon COOPER and Robert SCHRIEFFER.

The initial attempts to explain this “super-conductivity” were all trying to consider 
the perfect conductivity as a limiting case of metallic conductivity. As only classi-
cal models of electrical conduction were available (BOHR’s model of the atom dates 
from 1913) such efforts were in vain. In 1922 Albert EINSTEIN, whose assistance 
H.K. ONNES had called for in clarifying the question, admitted:
…With our considerable ignorance of complicated quantum mechanic systems, we 
are far from being able to formulate these ideas in a comprehensive theory. We can 
only attack the problem experimentally...

With no more success, the most brilliant minds of this era, from EINSTEIN to 
FEYNMAN, including SCHRÖDINGER and many others, agonized over this phenom-
enon with the aim of  nding an acceptable microscopic theory.

During all this time, however, experiments and results were accumulating. While 
lacking a credible microscopic model, physicists made several phenomenological 
models based on ad hoc equations with varying degrees of intuitive appeal or suc-
cess, each describing a set of experimental results.

1.3.1 - LONDON theory

LONDON theory is one of the most noteworthy phenomenological theories. Following 
the work of W. MEISSNER and R. OCHSENFELD, Fritz LONDON and his younger 
brother Heinz recognized the condition B  0 as the fundamental property of the su-
perconducting state. The challenge was no longer to explain the perfect conductivity 

but the perfect diamagnetism, i.e. the state where the system 
responds to an external magnetic  eld by developing a su-
per-current which generates a  eld in response that is equal, 
but opposite to, the applied  eld. In face of this challenge, 
the LONDON brothers invented the radically new concept of 
the existence of a macroscopic quantum state. Proceeding 
by analogy with LANGEVIN’s model for the magnetic sus-
ceptibility of atoms, they made the hypothesis that the bulk 
superconductor can be considered as a single, enormous, 
diamagnetic atom 7.

7 F. LONDON (1960) Super  uids: Vol I Macroscopic Theory of Superconductivity 2nd edi-
tion, Dover, New York; (2005) Une conception nouvelle de la supra-conductibilité, 
re-edition Hermann.

Fritz LONDON
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With the equations that bear his name, Fritz LONDON presented 
the  rst satisfactory electromagnetic model in 1933, 8 which 
described in a precise way the MEISSNER effect of the expul-
sion of magnetic  elds B. It also showed that if the magnetic 
 eld really vanishes at the heart of the superconductor it does 

not do so near the surface, but penetrates a distance L called 
the LONDON penetration depth. This was the  rst character-
istic length scale that emerged for the superconducting state.

In the wake of this result, and in or-
der to obtain numerical values for the 

penetration depth closer to the experimental results, Brian 
PIPPARD generalized LONDON’s equations to include non-local 
effects, thereby introducing the coherence length, which was 
to become the second characteristic length of superconduc-
tivity. Inherent to superconductivity and reduced by the im-
purities, the coherence length leads also to a renormalisation 
of the LONDON penetration depth, renamed simply penatra-
tion depth .

1.3.2 - The thermodynamic approach

In parallel with LONDON’s work, Cornelius Jacobus GORTER and Hendrik CASIMIR 
developed a thermodynamic approach to superconductivity in which they consid-
ered the normal-superconducting transition as a proper phase transition. They con-
structed a phenomenological model of two  uids, one superconducting and the other 
normal, with both intensive and extensive variables, an internal energy, thermody-
namic functions and potentials; in short all the tools of thermodynamics. The suc-
cess was all the greater as it described the superconducting/normal phase transi-
tion and, by integrating the negative surface energy associated with the penetration 
depth, it opened up the path towards an understanding of type II superconductivity.

1.3.3 - GINZBURG-LANDAU Theory

We have to wait until 1950, however, to see an approach 
associating electromagnetism and thermodynamics as was 
proposed by Vitaly GINZBURG and Lev LANDAU 9. By gen-
eralizing the LANDAU model of phase transitions, they pro-
posed a set of equations (the GINZBURG-LANDAU equations) 
to describe the behavior of the order parameter of the tran-
sition, vanishing in the normal phase and non-vanishing 
in the superconducting phase. With Alexei ABRIKOSOV 

8 F. LONDON (1934) Phys. Rev. 45, 379.
9 V. GINZBURG & L. LANDAU (1950) Zh. Eksp. Teor. Fiz. 20, 1064.

Heinz LONDON

Brian PIPPARD

Vitaly GINZBURG
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and Lev GORKOV, they assisted in the birth of the GLAG 
(GINZBURG-LANDAU-ABRIKOSOV-GORKOV) theory.

This formulation, essentially derived from pure intuition, 
proved to be very powerful in practice. The equations imply 
not only the MEISSNER effect and the penetration depth of the 
magnetic  eld, but also lead to the appearance of the second 
characteristic length. This coherence length, , can be inter-
preted as the minimal distance required for any variation in 
the density of superconducting carriers.

1.3.4 - Vortices

By solving, towards the middle of 
the 1950’s, the GINZBURG-LANDAU 
equations, A. ABRIKOSOV showed 
that the sign of the surface energy 
for a normal-superconducting in-
terface depends on the ratio be-
tween the characteristic lengths for 
penetration of a magnetic  eld  
(the penetration depth) and for 
coherence :

 »  in materials where    the interface surface energy turns negative when the mate-
rial is subject to a  eld exceeding Hc1, which leads the system to develop internal 
“lines of normal phase” (or vortices), thus explaining the decrease in magnetiza-
tion density of type II superconductors above this  eld Hc1;

 »  in materials where    the interface surface energy is always positive and the ma-
terial remains uniformly superconducting until the transition to the normal state. 
When the  eld reaches the critical value Hc the transition occurs simultaneously 
throughout the material.

The nature, type I or II, of the superconductor thus depends on the relative values of 
these two lengths.

Daniel CRIBIER was the  rst experi-
mentalist to show explicitly the ex-
istence of a vortex lattice, following 
the suggestion of Pierre-Gilles DE 
GENNES, the most prominent leader 
of the Orsay “School” of Physics.

Lev LANDAU

Alexei ABRIKOSOV
Lev GORKOV

Daniel CRIBIER
Pierre-Gilles DE GENNES
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1.4 - The microscopic BCS theory

Despite the advances facilitated by the GINZBURG-LANDAU theory, at the begin-
ning of the 1950’s superconductivity remained as mysterious 
as ever with respect to its microscopic origins. Things started 
to move faster, however, with the arrival of two fundamental 
results: the proof of the rôle of phonons and the appearance 
of COOPER pairs.

While the involvement of lattice vibrations (phonons), seen 
via the isotope effect, was well known, it was only in 1953 
and the calculations of Herbert FRÖHLICH 10 that the idea 
emerged of an attractive interaction, via the phonons, between 
two electrons of opposite velocities and spins (phonon drag).

The following year, Leon COOPER 11 showed that if two electrons of opposite wave-
vector and spin on the FERMI surface feel an attractive interaction, they will form a 
bound pair whose energy is less than the sum of the kinetic energy of the individual 
particles. Such a pair is called a “COOPER pair”.

Starting from these results, John BARDEEN, Leon COOPER 
and Robert SCHRIEFFER developed the BCS theory, for which 
they were to receive the NOBEL 
prize in 1972.  12 They described 
the collective behavior of COOPER 
pairs by exploiting many-body tech-
niques of calculation. With a very 
limited number of parameters they 
reproduced, explained and quanti-
 ed most experimental results: the 

MEISSNER effect, the electrodynam-
ic behavior, the coherence length, 
the critical  eld, the critical tem-
perature, speci  c heat, thermodynamic properties… They 
showed that the charge carriers are de  nitely not individual 
electrons but COOPER pairs, and that a minimal energy  
must be applied to the system in order to create the  rst ex-
cited states in the form of single electrons (quasi-particles). 
This energy , called the superconducting gap, plays a cen-
tral role in superconductivity.

10 H. FROHLICH (1950) Phys. Rev. 79, 845; (1952) Proc. Roy. Soc. A215, 291; (1954) Adv. 
Phys. 3, 325.

11 L.N. COOPER (1956) Phys. Rev. 104, 1189.
12 J. BARDEEN, L.N. COOPER & J.R. SCHRIEFFER (1957) Phys. Rev. 108, 1175.

Herbert FRÖHLICH

John BARDEEN

Leon COOPER

Robert SCHRIEFFER
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1.5 - Tunnelling eff ects

Coming shortly after BCS, studies of tunnelling effects between two bulk supercon-
ductors separated by an insulating barrier shed light on two processes:
 »  the JOSEPHSON effect, which corresponds to the transport of “whole” COOPER pairs 
from one bulk superconductor to the other. This transfer is controlled by the phase 
difference between the coherent condensates formed by the COOPER pairs of each 
superconductor;

 »  tunnelling across the insulating barrier by individual electrons (or more exactly 
by quasi-particles) formed by the unbinding of COOPER pairs. 13 This gives rise to 
many spectacular effects, including ANDREEV-SAINT-JAMES re  ections 14 predict-
ed independently by Alexander ANDREEV in Moscow and Daniel SAINT-JAMES in 
Paris, and provides vital information on the gaps, densities of state, the intensities 
of electron-phonon coupling and so on…

1.6 - A great diversity of superconducting materials

For a long time, the only known superconductors were metals or metal alloys. 
As their critical temperatures did not exceed 9.2 K for Niobium (the pure el-
ement with the highest Tc) or 23.2 K for the metallic compound Nb3Ge dis-
covered in 1973, there was a certain waning of interest in superconductors. 
Nonetheless some activity continued. It was rewarded by an initial success con-
stituted by the discovery, in 1980 by Denis JÉROME and his group, of purely or-
ganic superconductors 15 whose critical temperatures were not very high, but this 
proved that superconductivity was not just restricted to metals and metal alloys.

Then came the real revolution at the hands of Alex MÜLLER and Georg BEDNORZ. 
Convinced that the most promising candidates for high critical temperatures would 

be found more in the direction of 
oxides, they managed to synthesize 
a material with Lanthanum (La), 
Barium (Ba), Copper (Cu) and 
Oxygen (O). On January 27th 1986 
they observed a rapid decrease in 
the resistivity at around 30 K which 
they interpreted as signalling the 
presence of a superconducting 
phase.

13 I. GIAEVER (1960) Phys. Rev. Lett. 5, 147.
14 A. ANDREEV (1964) Zh. Eksperim. i. Teor. Fiz. 46, 1823 (Soviet Physics JETP 19, 1228)

D. SAINT-JAMES (1964) J. de Physique 25, 899.
15 D. JÉROME et al. (1980) J. Phys. Lett. (Paris) 41, L45.

Alex MÜLLER
Georg BEDNORZ
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Just like H. K. ONNES and G. HOLST in an earlier age, they 
made sure that the results were reproducible and with the cau-
tion of their predecessors, submitted to the journal Zeitschrift 
für Physik  16 an article with the title Possibility of a high 
temperature superconductor in the system Ba-La-Cu-O. This 
started a race to  nd similar compounds with a transition tem-
perature that would be even higher. This was how shortly af-
ter, the compound Y-Ba-Cu-O, whose critical temperature Tc 
of 93 K is therefore above that of liquid nitrogen, was dis-
covered by Paul CHU. 17 It was then the turn of more com-
plex compounds with Tc  110 K (1988), 128 K (1991), 138 K (1993)! All have in 
common the existence of CuO2 planes carrying the superconductivity, whence their 
generic name of “cuprates”.

More recently a multitude of new superconducting materials have been discovered: 
in 1991 the family of doped fullerenes doped with alkaline elements (Tc  40 K), 18 
in 2001 the metallic compound MgB2 (Tc  39 K), 19 in 2008 the iron-based family 
(pnictides) (Tc 55 K) 20 and in 2015 the coumpound SH3, the critical temperature 
of which reached 203K under a pressure of 155GPa. 21

1.7 - “Unconventional” superconductors

As a good number of the new compounds possess electronic structures which are 
very different from those of metals and alloys, many researchers have questioned the 
very nature of the new superconductors and whether the model of BCS is appropri-
ate for them.

From an experimental point of view, the zero resistivity, the MEISSNER effect, the pen-
etration depth, the critical  elds Hc1 and Hc2, the  ux quantum, the JOSEPHSON effects 
are all similar. In contrast, for some cases the gap is either anisotropic or multiple; in 
others, such as the cuprates, heavy fermions and certain organic compounds, the con-
ducting phases coexists with magnetic  uc  tuations, 22 or even coexists with a mag-
netically ordered phase, two properties considered hitherto as being incompatible.

From the point of view of theory, the COOPER pair remains the fundamental com-
ponent even if in some cases it seems to be constituted by two electrons of the same 

16 A. MÜLLER & G. BEDNORZ (1986) Zeitschrift für Physik 4, 189.
17 M.K. WU et al. (1987) Phys. Rev. Lett. 58, 908.
18 A.F. HEBARD et al. (1991) Nature 350, 600; 

M.J. ROSSEINSKY et al. (1991) Phys. Rev. Lett. 66, 2830.
19 J. NAGAMATSU et al. (2001) Nature 410, 63.
20 Y. KAMIHARA et al. (2008) J. Am. Chem. Soc. 130, 3296.
21 A.P. DROZDOV et al. (2015) Nature 525,73.
22 See for example D. MANSKE (2004) Theory of unconventional superconductors, Springer.

Paul CHU
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spin (triplet superconductivity) in contrast to BCS where they are of opposite spin 
(singlet superconductivity). Perhaps more importantly, the pairing mechanism me-
diated by phonons is called into question; several theoretical models have been 
proposed with pairing mechanisms including magnetic  uctuations 22 as numerous 

experimental results 23 in cuprates and other systems would 
seem to suggest.

In any case, a large number of the new superconductors dif-
fer, in one way or another, from the BCS model and intensive 
research is in progress to clarify the situation.

Jean ROSSAT-MIGNOT showed, by the inelastic scattering of 
neutrons, the occurrence of anti-ferromagnetic  uctuations in 
the superconductivity state of the cuprates. He showed in par-
ticular that the intensity of the antiferromagnetic resonance 
peak decreases with temperature, vanishing at Tc.

1.8 - Numerous spectacular applications

Thanks to their extraordinary properties, superconductors have never ceased to in-
spire. Many applications, linked to their perfect electrical conductivity, the expulsion 
of magnetic  elds and to coherence effects have been dreamed up, and for a good 
number of them, implemented.

Thus the immense majority of the apparatus for Magnetic Resonance Imaging (MRI) 
are equipped with superconducting coils. Electromagnets with superconducting 
windings are familiar to scienti  c laboratories and are crucial to the operation of 
large instruments, such as the enormous hadron collider LHC of CERN or the future 
tokamak of the ITER project. On a more experimental level, motors, transformers 
and transmission lines and current limiters with superconducting wires have been 
designed and tested. A number of magnetically levitated trains function with super-
conducting coils and superconducting bearings are being developed.

Relying on the properties of JOSEPHSON junctions, the SQUID is an extremely sen-
sitive probe of magnetic  elds. Already the instrument of choice for ultra-sensitive 
measurements of magnetization, its use in medicine is under development in order 
to detect the electromagnetic activity of several different organs of the human body.

In a host of other contexts, superconductivity is also used in astrophysics (as ultra-
sensitive particle detectors) in the engineering large particle detectors (for intense 
magnetic  elds in very large volumes), in the resonant cavities of particle accelera-
tors… Computers based on JOSEPHSON junctions using the  ux quantum to store 
information have been tested with the idea of making ultra-rapid machines with low 
energy consumption.

23 J. ROSSAT-MIGNOD et al. (1991) Physica C 86, 91.

Jean ROSSAT-MIGNOT
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The search for materials combining both extreme superconducting parameters (high 
transition temperatures, critical currents and critical  elds) and satisfactory physi-
co-chemical and mechanical properties of ductility and resistance, is currently very 
active in university laboratories as well as in industry. Advances in this will certainly 
lead to even more applications and extension of existing one on a greater scale.

1.9 - Superconductivity in the history of mankind

We should not forget that superconductivity is also a history of people. Several of the 
protagonists were directly involved in the drama and dark moments of the 20th cen-
tury: the LONDON brothers, as German Jews, had to  ee to live as exiles in England; 
Lev SHUBNIKOV was executed on the basis of falsi  ed documents during the great 
Stalinist purges; the issue of the Soviet physics Journal Zh. Eksperim. i. Teor. Fiz., 
published during the worst period of McCarthyism and the communist witch-hunt, 
and which included the famous article by GINZBURG and LANDAU, was thrown into 
the sea by the New York dock workers when it arrived by boat, and their work re-
mained unknown until years later.

Following the “rediscovery” of superconductivity with the materials with high su-
perconducting temperatures, several historical and popular works have been pub-
lished. Amongst them, we note The Cold Wars: A History of Superconductivity 24  

which follows the scienti  c paths pursued, the successes and 
the blind alleys, but also relates the story of the people who 
took part in the advancement of our scienti  c knowledge.

As specialist in low temperature physics, SHUBNIKOV worked 
on type II superconductors in particular. The intermediate 
phase between the completely MEISSNER phase and the normal 
state of type II superconductors now bears his name.

24 J. MATRICON & G. WAYSAND (1994) The Cold Wars: A History of Superconductivity, 
Rutgers University Press, translated from the French edition (1994) of La guerre du 
froid : une histoire de la supraconductivité, Seuil.

Lev SHUBNIKOV



Chapter 2 
 

LONDON THEORY 

The first phenomenological approach to the electromagnetic behavior of supercon-
ductors was published in 1935 by the brothers Fritz and Heinz LONDON.1 Fascinat-
ed by the results of MEISSNER and OCHSENFELD,2 who had shown that within the 
superconductor the magnetic field B vanishes irrespective of the thermal and mag-
netic history of the sample, they understood that the key feature of superconduct-
ivity is not the disappearance of the electrical resistance but rather the expulsion of 
the magnetic flux. 

Now MAXWELL’s equations, that govern electromagnetism, turn out to be incapa-
ble of including this effect. The most they can show is that, in a perfect conductor, 
the magnetic field cannot vary with time; to include the exclusion of the magnetic 
field, we must add some additional ingredient. This is precisely what was done by 
F. and H. LONDON, with the equations now bearing their name. 

2.1 - MAXWELL’s equations 

The theory of electromagnetism is based on the equations of MAXWELL in their 
bulk form: 3 

 
 E  B

t
(M1)  E 

0
(M2)

B  0 (M3)   B  0j 0 0
E
t

(M4)
 (2.1a) 

where  and j represent respectively, the total charge and total current densities of 
the system, including polarization charges, displacement currents and AMPÈRE  
currents. 

                                                        
1 F. LONDON & H. LONDON (1935) Proc. Roy. Soc. (London) A 155 , 71. 
2 W. MEISSNER & R. OCHSENFELD (1933) Naturwissenschaften 21 , 787. 
3 In this book we will use the symbol  for the gradient operator. Alternative notations 

that are common in the literature are: 
 U  grad U ; ·A  div A ; 

 A  curl A  rot A ; · U  2U  U ; 2A  A 
(vector with components Ax, Ay, Az). 

13© Springer International Publishing AG 2017
P. Mangin and R. Kahn, Superconductivity, 
DOI 10.1007/978-3-319-50527-5_2
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At the surface, they imply the boundary conditions: 

 

 

Et1  Et2  (E2 E1) n12 
surf

0
(Bt2 Bt1)  n12  0 jsurf (B2 B1) n12  0

 (2.1b) 

where surf and jsurf represent the surface charge and current densities, n12 is the 
unit vector normal to the surface, and the suffix “ t” indicates that it is the tangential 
components of the variables that is concerned. These equations remain valid under 
all circumstances. 

We must add the condition of charge conservation, 

 ( v) 
t
 0  (2.1c) 

where v is the velocity of the electric charges. 

In normal conductors we derive a constitutive relation between the current and 
electrical field: OHM’s law. 

Notation - to avoid any confusion in signs, throughout this book the charge of the 
electron is defined as qe   e where e = 1.602 10 19 C. 

2.2 - The behavior expected for a perfect conductor 

Since from the point of view of electricity, the superconductor appears as a conduc-
tor offering no resistance (once it has been established in a superconducting ring, 
the current does not decay), it seems to be logical to first examine the effect of an 
electric field, and then of a magnetic field, on a perfect conductor. 

2.2.1 - Electrical conduction in a normal conductor 

Suppose that the ends of a normal metal wire are subject to a constant difference  
in potential. Within the metal a permanent electric field E appears. Each electron  
experiences a force due to this field F  qe E, to which is added a damping force f 
which, to a first approximation, is proportional, and opposite, to its mean velocity 
of motion 
 f  v .  (2.2) 

The fundamental equation of motion is then written as (m is the electron mass) 

 
 
qeE v  m d v

dt
.  (2.3) 

By integrating, 

 
  

v  
qe E 1 e

t   (2.4a) 
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where   m/  is the characteristic time for reaching a steady velocity. From this 
result (Fig. 2.1), the speed increases linearly at short times (t   and reaches a 
limiting value for long times (t  ) 

 
 

v 
qe E.  (2.4b)  

In the steady state, the current density is proportional to the electronic density n and 
to the electric field E, 

 
  
j  nqe v  ne2

E  (2.5) 

which is none other than the usual OHM’s law j   E. The coefficient of propor-
tionality  is the electrical conductivity of the material and the resistivity is   1/ . 

Figure 2.1 - Variation in the mean
velocity of electrons in a conductor

subject to an electric field E
For short times (t   ), the velocity

increases linearly to reach the steady
state value v   leading to OHM’s law.

G H

G H

perfect conductor

resistive conductor

For copper with resistivity   1.7  cm at room temperature and electronic den-
sity n  1.1 1029 electrons m 3,   2.5 10 14

 
s. Transient effects are therefore ex-

tremely short-lived and are only felt if the electrical field is carried by an electro-
magnetic wave of frequency at least 1014 Hz. 

2.2.2 - Electrical conduction in a perfect conductor 

A perfect conductor is defined as having a resistivity zero, i.e. with a damping  
coefficient  = 0. The equation of motion of an electron is simply 

 
 
m dv

dt
 qeE.   (2.6a) 

On the other hand, as the current density is determined by the velocity of electrons 
that at time t are to be found at the point r 

 j(r,t)  nqev(r,t)  (2.6b) 
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we have j
t
 nqe

v
t

 (2.6c) 

with (see App. 2A) v
t
 dv

dt
(v )v.  (2.7) 

The difference between the total derivative and the partial derivative leads to the 
appearance of a non-linear term (v · )v which vanishes if we have sufficient 
symmetry. If we restrict ourselves to such cases, 

 
 

j
t
 ne2

m
E.  (2.8) 

It will be enough to consider such special cases in order to explain the fundamental 
difference between a perfect conductor and a superconductor. 

2.2.3 - Magnetic fields in a perfect conductor 

By taking the vector curl ( ) of the equation (2.8) and taking into account the first 
equation of MAXWELL (2.1a-M1), we obtain the first relation between the partial 
time derivatives of B and j 

 
 

0  j
t

 1

L
2

B
t

 (2.9) 

where the characteristic length L is defined by 

 L
2  m

0ne2 .  (2.10) 

Provided E does not change too quickly, i.e. within the Quasi-Static Approximation 
(QSA),4 the fourth MAXWELL equation (2.1a-M4) reduces to 

  B  0j  (2.11) 

and with this, we obtain a second relation between the same partial derivatives 5 

 
 
 B

t
 0

j
t

.  (2.12) 

By taking the vector curl of expressions (2.9) and (2.12) and using: 
» the vector relation 

 (  


 B)   (  B)  2 B, 
» the third MAXWELL equation (2.1a-M3),  B  0, 

                                                        
4 In a normal conductor, this approximation amounts to the neglect of ( 0 0 E/ t) which, 

at a frequency , is 0 0 E, to be compared to 0 j  0 E. We can check that the two 
terms become of the same order of magnitude when   1012 Hz. 

5 The approximation consists of neglecting, within the expression (2.12), a term 
( 0 0 2E/ t2), of order 0 0 2E, with respect to ( 0 j/ t), that by Equation (2.8) equals 
(E/ L

2). This means that  must be of order 1015 Hz for the two terms to be comparable. 
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» and the condition of charge conservation in the steady state,  j  0, 
we find the equations 

 
 

2 B(r,t)
t

 1

L
2

B(r,t)
t

 (2.13a) 

 2 j(r,t)
t

 1

L
2

j(r,t)
t

 (2.13b) 

which determine the spatial variation of time derivatives of the magnetic field B 
and of the current density j within a perfect conductor. 

 Application to a perfectly conducting slab 

Consider a perfectly conducting slab, infinite in the y and z directions, and bounded 
by the surfaces x   d/2 (i.e. of thickness d ) (Fig. 2.2). 

9

9

9

7

7

9

9

7

7

7

 
Figure 2.2 - Variation of the current density jy / t and magnetic field Bz / t inside  
a perfectly conducting slab that is subject to a time-varying magnetic field B0/ t 

A change in the current density j0 on the external layers creates a change in the 
field B0. The variation of the current densities j near the surface of the perfect 
conductor is that induced by the variation of B0. It is such that B stays constant 
( Bz

 / t  0) inside the slab except for a transitional region of thickness L. 

When current densities j0(t) are applied by an experimentalist to metallic layers 
outside and parallel to the yz plane, they generate in the space around the perfect 
conductor, and inside it, a magnetic field B0(t) in the z-direction (the “field” of the 
conductor). How does the magnetic field B(t) then develop within the slab of per-
fect conductor? 

Because of the symmetries of the system, B has a single component Bz(x) in the  
z direction that depends only the variable x. 
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Equation (2.13a) simplifies to 

 
2

x2
Bz (x)

t
1

L
2

Bz (x)
t

 0  (2.14) 

with solution 
Bz (x)

t
 e

x
L  e

x
L  (2.15) 

where the constants of integration  and  are determined by the conditions of con-
tinuity of the magnetic field, that is, 

 Bz x  d
2

 Bz x  d
2

 B0  (2.16a) 

and also Bz (x)
t

x  d
2


Bz (x)

t
x  d

2
 B0

t
.  (2.16b) 

This leads to the equation for the variation of the magnetic field in the perfect con-
ductor 

 Bz (x)
t

 B0

t

cosh x
L

cosh d
2 L

 (2.17) 

whose form as a function of x is shown in Figure 2.2. 

When d  L, the expression (2.17) is close to being exponentially decreasing 6 
from each surface of the perfect conductor 

 Bz
t

B0

t
 e

u
L  (2.18) 

where the variable u is the distance separating a given point in the material from its 
closest surface (u  d/2  x for x > 0 and u  d/2  x for x < 0). 

To give a feeling for the scales, in copper this characteristic length L is about 
16 nm. 

Therefore, beyond a few times L , a change in the external field B0(t) has no effect 
on the magnetic field inside a perfect conductor wich remains unchanged. 

Qualitatively, the origin of this behavior is the appearance, near the surfaces of the 
slab of induced current densities j(t) creating a field Ba(t) equal and opposite to 
B0(t) beyond L: this is the phenomenon of induction. According to the expres-
sion (2.12), j/ t has only one component jy(x)/ t in the y-direction and it depends 
only on the coordinate x, 

                                                        
6 For x close to + d/2 and putting x  d/2 – u, we have for x and d  L

 , 
 cosh(x/ L)  ex/ L/2 and cosh(d/2 L)  e d/2 L/2. 
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jy (x)

t
 1

0 x
Bz
t

 (2.19) 

which gives, by differentiating (2.17) with respect to x, 

 
jy (x)

t
 1

0 L

B0

t

sinh x
L

cosh d
2 L

.  (2.20) 

Just as for Bz / t, this term decreases exponentially from the surface when d  L, 

 
jy

t
1

0 L

B0

t
 e

u
L  for x  0  (2.21) 

confirming that in order to neutralize the change in magnetic field within the slab, 
there arises a change in the current density jy(x)/ t near its surface. This is of  
opposite sign to the change in current density in the external layers j 0/ t . 

This inductive mechanism is seen in all metals. In a normal metal, however, the 
induced current is damped by the resistivity in a time of order  (10 14 s in copper). 
After this time Ba vanish and the magnetic field B0 can “penetrate” the sample. 

We have shown, therefore, that the perfect conductor reacts, in agreement with 
LENZ’s law, in opposing any change in the magnetic field in its interior (beyond a 
distance of L). 

2.3 - Superconductor versus perfect conductor 

In fact it is seen experimentally that the magnetic behavior of a superconductor is 
not what we would expect of a perfect conductor. To illustrate this difference, let us 
imagine two metallic conductors undergoing, at a temperature Tc , a normal/perfect 
conductor transition for the first, and a normal/superconductor transition for the 
second. 

2.3.1 - Cooling in zero field followed by application of a field 

We first consider an experiment in which, starting from a temperature T  Tc 
(Fig. 2.3, column 1), the samples are cooled in zero magnetic field (Figs 2.3a and 
2.3c) to a temperature below Tc . Then, at this low temperature, a magnetic field B0 
is applied (Figs. 2.3b and 2.3d). Following this procedure, no difference in behav-
ior appears between the “perfect conductor” and the superconductor: application  
of the magnetic field below the transition temperature leads in each case to the  
appearance very close to the surface of screening currents, which oppose the pene-
tration of magnetic fields into the bulk of the samples. 
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Figure 2.3 - Magnetic behavior of a perfect conductor  and of a superconductor  

cooled in zero field, and then subjected to a field B0 below the transition temperature 
No difference in the behavior can be seen. Despite the application of 
an external field, the magnetic field B inside the sample remains zero. 

2.3.2 - Application of the magnetic field when T > Tc 
 followed by cooling in the field 

In the second experiment, we first apply the magnetic field B0 on the samples when 
they are in the normal state at temperature T  Tc and then since they are conduc-
tors, as we emphasized at the end of section 2.2.3, the screening current are imme-
diately damped and the magnetic field penetrates both samples (Fig. 2.4, col-
umn 1). We then cool both samples in the field, and it is here that very different 
behavior will be seen. 

In the perfect conductor, the magnetic field stays the same and continues to cross 
the sample. As the external field has not varied below the transition temperature no 
induced current has been generated (Fig. 2.4a). 

In contrast, in the superconductor, starting from Tc spontaneous screening currents, 
also known as LONDON currents, appear and expel the magnetic field from the 
sample (Fig. 2.4c). The magnetic field is “expelled” from the superconductor by 
screening without induction. This is the MEISSNER effect. 
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If we then turn off the magnetic field B0, the screening currents of the superconduc-
tor disappear just as spontaneously as they appeared (Fig. 2.4d) and the magnetic 
field remains at zero in the sample. 

In contrast in the “perfect conductor”, which obeys LENZ’s law, turning off the 
magnetic field below Tc induces screening currents which oppose the changes in 
magnetic field in the sample, with the effect of trapping the magnetic field 
(Fig. 2.4b) applied above the transition temperature. 

 
Figure 2.4 - Comparison of the magnetic behavior of a perfect conductor and a superconductor 

cooled under a non-zero field B0, before (aa and cc) and after the field is turned off (bb and dd) 
The magnetic field is always expelled from the superconductor (c and d) 

while only its changes vanish in the perfect conductor (a and b). 

The fundamental difference between the perfect conductor and the superconductor 
is therefore clearly seen: the perfect conductor obeys LENZ’s law with B/ t  0 
while the superconductor maintains B  0 inside. While the magnetic state of the 
“perfect conductor” depends on its history (compare Fig. 2.3a with 2.4b or 2.3b 
with 2.4a), the magnetic state of the superconductor does not (compare Fig. 2.3c 
with 2.4d or 2.3d with 2.4c). 
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2.4 - The LONDON equations 

As experimental results showed that MAXWELL’s equations were insufficient to 
describe the magnetic state of the superconductor, additional equations had to be 
added. These were originally written on intuitive grounds and are known as the 
LONDON equations. 

2.4.1 - “Superconducting electrons” 

Up to now the electrons that we have considered are implicitly the mobile electrons 
of the metal, that is to say all its free electrons. One of the first questions we may 
ask is, which of the electrons are “superconducting?” 

The answer is that at 0 K all the free electrons can be considered as superconduct-
ing, but at non-zero temperatures a certain fraction of them behave as normal elec-
trons, thereby reducing, by the same fraction, those that are superconducting. To 
take this into account, GORTER and CASIMIR 7 introduced a two-fluid model in 
which they divided the free electrons of density n into a sum of superconducting 
electrons of density ns and normal electrons of density nn , 
 n  nn  ns . (2.22) 

The two, artificially separated, groups of electrons react in parallel to external 
stimuli, each according to its own nature. The non-resistive superconducting elec-
trons “short-circuit” the resistive normal electrons. The qualitative justification and 
interpretation of this two-fluid model will be discussed in Chapter 8. 

In the following discussion, only the superconducting electrons will be considered. 

2.4.2 - First LONDON equation 

The first LONDON equation is none other than the generalization of equation (2.8) 
with the symmetry constraint lifted. As only the superconducting electrons are in-
volved, it can be written 

 
 

j
t


ns e2

m
E  1

0 L
2 E.  (2.23) 

This is an equation for the evolution of the current density; i.e. the acceleration of 
the charge density. The length 

 L  m

0 ns e2
 (2.24) 

is called the “LONDON penetration depth”. 

                                                        
7 C.J. GORTER & H.B.G. CASIMIR (1934) Physica C 153-155, 1405. 
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2.4.3 - Second LONDON equation 

The second LONDON equation is written by simply transposing equation (2.9).  
To include the fact that in the superconductor it is not the time derivative B/ t that 
is zero but B itself. In the equations for the perfect conductor we then replace the 
time derivatives of j and of B simply by j and B themselves. In other words we 
substitute 

 
 

B
t

B ; j
t

j  (2.25) 

which leads to LONDON’s second equation 

 0  j  1

L
2 B  (2.26) 

and therefore, to the equations that determine the spatial variations of the magnetic 
field B and the current density j in the superconductor (see eq. 2.13a and 2.13b): 

 2B B

L
2  0  (2.27a) 

 2j j

L
2  0.  (2.27b) 

We should not forget that here we have a phenomenological description whose 
microscopic justification will be seen only with the appearance of the microscopic 
BCS theory of superconductivity. 

2.4.4 - Superconducting slab in an applied magnetic field 

For the experimental set-up of Figure 2.2, by making the substitutions (2.25) into 
the results of section 2.2.3 (equations 2.17 and 2.20) we can obtain the distributions 
in space of the magnetic field and the current density in a superconducting slab of 
thickness d: 

 Bz (x)  B0
cosh x

L

cosh d
2 L

 (2.28a) 

 jy (x)  B0

0 L

sinh x
L

cosh d
2 L

.  (2.28b) 

Thick slab ((d  L )  

If the thickness of slab is large compared to the characteristic length L, the approx-
imations (2.18) and (2.21) remain valid, with both the magnetic field and current 
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density decreasing exponentially (Fig. 2.5) from each surface (u is the distance 
from the surface) 

 Bz B0  e
u
L ; jy  B0

0 L
 e

u
L .  (2.29) 

Magnetic field Current density  
Figure 2.5 - Profiles of the magnetic field and current density in a thick  

superconducting slab (d  L) placed in a magnetic field B0 parallel to its surface 
The magnetic field decreases exponentially from the surface over a distance of order the 
LONDON penetration depth and goes to zero deep within the sample. The current density, which 
decreases exponentially with the same length-scale, screens the external magnetic field. 

Thin slab (d  L )  

If the slab thickness is comparable or smaller than the length L, the approximation 
to decreasing exponentials is no longer justified. The magnetic field never  
approaches zero and the current density varies quasi-linearly from one surface of 
the sample to the other (Fig. 2.6) with a maximum value smaller than B0

 / 0 L. 

Magnetic field Current density  
Figure 2.6 - Profiles of magnetic field and current density for a thin  

superconducting slab (d  L  ) placed in a magnetic field B0 parallel to its surface 
The magnetic field does not have “sufficient space” to go to zero and 
therefore does not vanish. The current density at the surface is reduced. 
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Qualitatively, the superconducting currents do not have sufficient space to flow in 
order to completely screen the magnetic field. 

The MEISSNER effect which requires exclusion of the magnetic field from the su-
perconductor is therefore only complete after a few times the length L. 

2.5 - The LONDON penetration depth 

2.5.1 - Experimental measurement of L 

We shall see later that the magnetic moment M  carried by a slab of thickness d 
subject to a magnetic field B0 parallel to its largest surface is along B0 and equals 8 

 
  
M  V

0

1
d

B(x)d /2
d /2  dx B0  (2.30a) 

i.e. it is the product of the sample volume V and the difference between the mean 
magnetic field in the sample and the field B0 generated by the external current. By 
integrating (2.30a) we find 

 
  
M  B0 V

0
1 2 L

d
tanh d

2 L
  (2.30b) 

with limiting behavior: 9 

» for d  L 
  
M B0 V

0
1 2 L

d
B0 V

0
 (2.30c) 

the magnetic moment is proportional to the sample volume.
 
 

» for d  L 
  
M 1

3
B0 V

0

d
2 L

2

 (2.30d) 

The magnetic moment depends explicitly on the ratio d/2 L, thus allowing for the 
determination of L by making measurements on samples of varying thicknesses. 

Other methods exist, using thin films or via inductive methods. In any case they are 
always subtle and relatively imprecise. In Table 2.1 we give a few values measured 
at 0 K, to be compared with those calculated from the relation (2.24). 

For reasons that we will return to in the next chapter the measured values of  
the effective magnetic penetration depth, or simply penetration depth, denoted , 
are systematically greater than the LONDON penetration depth expressed by the 
relation (2.10). 

                                                        
8 See the proof of this formula in the appendix to Chapter 4. 
9 tanh(x)  1 for x  1 and [tanh(x)  x  (x3/3)] for x  1. 
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Table 2.1 - Values for the LONDON penetration depths  
as  calculated and measured for a few metals 

Element Al Sn Pb Cd Nb 

Theoretical L [nm] 10 34 37 110 39 

Measured  [nm] extrapolated to 0 K 50 51 39 130 44 

2.5.2 - Temperature dependence of the LONDON penetration depth 

Experiments show that the LONDON penetration depth L(T ) increases slowly at 
low temperatures and diverges approaching the transition temperature Tc (Fig. 2.7). 
The empirical law quoted most often to represent its behavior is 

 L(T )  L(0) 1 T
Tc

4 ½

 (2.31) 

with near Tc L(T ) (Tc T ) ½  (2.32) 

implying, from relations (2.24) and (2.32), 
 ns(T )  (Tc  T ) near Tc . (2.33) 

This also indicates that the superconductivity disappears with the “conversion” of 
the superconducting electrons to normal electrons. 

The LONDON penetration depth  
increases slowly at low  temperatures 
and diverges at Tc . This divergence is 
due to the disappearance of the  
superconducting electrons. 

Figure 2.7 - Thermal dependence of the LONDON penetration depth 

2.6 - Applications to superconducting wires 

2.6.1 - A wire in magnetic field 

The behavior of a cylindrical superconductor of radius R, placed in a magnetic field 
B0 parallel to its axis (Fig. 2.8) is not fundamentally different from that of a slab. 
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Figure 2.8 - Superconducting wire subject to an applied field B0  

generated by the current density j0 flowing in an external solenoid 
The axial magnetic field B decreases exponentially under the influence of the screening 
current density j normal to the radial direction. The large circles carrying j0 represent the 
solenoid generating the field B0 inside which the (solid) cylinder of radius R is placed. 

The distribution of magnetic fields B inside the cylinder is the solution of equa-
tion (2.27a) where, in cylindrical coordinates (r, , z), B has a single component 
along z and Bz depends only on r, leading to 

 d2Bz (r)
dr2  1

r
dBz (r)

dr
1

L
2 Bz (r)  0  (2.34a) 

or, changing to the variable r   r/ L 

 
d2Bz (r )

dr 2  1
r

dBz (r )
dr

Bz (r )  0  (2.34b) 

which is the modified BESSEL equation of order zero10 whose solutions are 

  Bz (r )  I0(r )  K0(r )  (2.35) 

where I0 and K0 are the modified BESSEL functions of first and second kind,  
respectively, of order zero.11 

                                                        
10 M. ABRAMOWITZ, I. STEGUN (1972) Handbook of mathematical functions, Wiley, 1972. 
11 We can find in Appendix 2C, at the end of this chapter, the relevant properties of these 

special functions. 
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 and  are constants determined by the boundary conditions: 
» at the origin (r  0), Bz must be finite while the function K0 diverges, implying 

that   0; 

» at the surface (r  R), the component Bz tangent to the surface must be continu-
ous, or 

 Bz r  R
L

 B0  (2.36) 

which leads to the expression for the magnetic field in the wire, 

 

 

Bz (r)  B0
I0

r
L

I0
R
L

.   (2.37) 

The current density j can be found from B by the fourth MAXWELL equation, using 
the symmetries and the formula for the derivatives of BESSEL functions (2.120) 

 j (r)  1
0

Bz (r)
r

 B0

0 L

I1
r
L

I0
R
L

 (2.38) 

where I1 is the modified BESSEL function of the first kind of order 1 (see App. 2C, 
Fig. 2.13). 

If the wire’s radius is large compared to the LONDON penetration depth (R  L), 
near the surface  r   1, we can replace the BESSEL functions by their asymptotic 
behavior (2.118 and 2.119) and using the fact that r is very close R, we find 

 Bz (r) B0 e
R r

L

r
R

B0e
u

L ; u  R r  (2.39) 

and j (r) B0

0 L
 e

u
L .  (2.40) 

Once again, Bz(r) and j  (r) decrease exponentially below the surface. Within a layer 
of thickness a few times the LONDON penetration depth, there appears a circular 
current density that screens the magnetic field inside the cylinder. This is the 
equivalent, in cylindrical symmetry, of the thick slab shown in Figure 2.5. If the 
radius of the cylinder is small compared to L, we find the equivalent of Figure 2.6. 
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2.6.2 - A current-carrying wire 

When connected to the terminals of a current generator, the superconducting wire 
(a cylinder of radius R) carries a total current of intensity I distributed according the 
current density j(r), which is the solution to equation (2.27b). In cylindrical coordi-
nates with the z axis along the wire, j has a single component  jz depending only 
on r and, as in the previous paragraph, it follows that 

 d2 jz (r)
dr2  1

r
d jz (r)

dr
1

L
2 jz (r)  0  (2.41) 

whose solution is, after removing the divergent term at the origin, 

 jz (r)  I0
r
L

  (2.42) 

where the constant  must be such that the flux of j across the cross-section of the 
wire equals the injected current I 

 I  jz (r)0
R 2 r dr  2 L

2 r
L

I0
r
L

d r
L0

R/ L

  (2.43) 

which gives by integration (relation 2.121), 

 jz (r)  I
2 R L

I0
r
L

I1
R
L

.   (2.44) 

Once again, the current density is concentrated in a layer near the surface of thick-
ness a few times the LONDON penetration depth, in which it decreases exponentially 

 jz (u) I
2 R L

 e
u

L ; u  R r .  (2.45a) 

The profile of the magnetic field B produced inside the wire by the current can be 
deduced from that of j via LONDON’s second equation (2.26). By the symmetries of 
the problem, it is purely tangential and decreases near the surface with the form 

 B (u) 0I
2 R

e
u
L .  (2.45b) 

We see, then, that the localization of the current density close to the surface leads 
to the vanishing of the magnetic field B in the bulk, which is a new example of the 
MEISSNER effect (Fig. 2.9). 

Outside the wire, the magnetic field decreases as 1/r as can easily be calculated 
using AMPÈRE’s law. 
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Figure 2.9 - Profile of the current density I flowing in a superconducting wire 
The axial current is distributed in close proximity to the surface, within a LONDON 
penetration depth. It is such that the magnetic field generated, which is tan-
gential to radial vectors, is also localized within the LONDON penetration depth 
and vanishes at the core. The magnetic field falls off as 1/r outside the wire. 

2.6.3 - Thin current-carrying wire 

By exactly same logic as that of section 2.4.4, we show that if the wire has a diame-
ter equal to or less than the LONDON penetration depth, the current density does not 
have enough space to fall to zero. At most it will be slightly smaller in the center 
than near the surface. If R  L, jz is almost uniform within the sample and then 
takes the value 

 jz (r) I
R2  (2.46a) 

and the magnetic field is obtained from AMPÈRE’s law: 

for r  R B (r) I
R2  r

for r  R B (r) I
2 r

.
 (2.46b) 

2.6.4 - Generalized response of the wire 

These laws for the variation of the magnetic field and the current density in a su-
perconducting wire whose diameter is much greater than L, can be generalized, by 
defining B  as the value of the magnetic field on the surface of the sample, to 

 B(u)  B e
u
L  (2.47a) 
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 j(u)  B
0 L

 e
u
L  (2.47b) 

where: 
» B  B0  if the wire is placed in a field produced by external currents (relations 

2.39 and 2.40); 

» B  0I
2 R

 if the wire carries an injected current I (relations 2.45); 

» B  is a combination of two components when the wire simultaneously carries a 
current and is subject to an external magnetic field B0. 

Remark - When the superconductor is not infinite in the field direction, as can be the 
case of an actual wire or slab, B  is the superposition of the applied field B0 and a 
contribution from the demagnetizing field (see Chap. 5). 

2.7 - The OCHSENFELD experiment 

We have now seen that, if it is placed in a magnetic field, the superconductor cre-
ates screening currents in a layer with characteristic thickness L. These currents 
generate a magnetic field inside the material that we shall call Ba (in reference to 
AMPÈRE currents in magnetism), which exactly compensates the applied field B0. 

If the superconducting object is of finite size, the screening currents also strengthen 
the magnetic field outside the sample by the return of the field lines Ba (Fig. 2.10b). 
We then have the classic image of magnetic field lines that go around the sample 
(Fig. 2.10c). 

 
Figure 2.10 - Exclusion of the magnetic field 

(a) The field B0 arising from external conductors. (b) The field Ba generated 
by the screening currents. (c) The total magnetic field: inside the supercon-
ductor, the fields B0 and Ba compensate, while outside they reinforce each 
other, thus the field lines near the surface are squeezed together. 
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Such an increase in the field near the surface was proved by OCHSENFELD by in-
serting a magnetic flux-meter between two superconducting samples separated by a 
small gap and subject to a uniform B0 (Fig. 2.11). 

» When T  Tc: the metal is normal and the magnetic field uniform everywhere: the 
measured flux equals n  B0S. 

» When T  Tc: the metal becomes superconducting, the field lines “avoid” the 
samples and the magnetic field strengthens in the gap between them. The meas-
ured flux s becomes larger than n. 

 
Figure 2.11 - The OCHSENFELD experiment 

Made out of a material with a superconducting transition at temperature Tc , two identical ellip-
soids, separated by a distance D, are placed in a uniform magnetic field B0. Using a coil with cross-
section S, we measure the magnetic flux across the space separating the ellipsoids. (a) T  Tc : the 
metal is in its normal state and the magnetic field is uniform: the measured flux equals n  B0S. (b) 
T  Tc : the metal is superconducting. Part of the the excluded magnetic field comes out and 
strengthens the field between the two ellipsoids. The flux through the coil increases. 

In their original experiment,2 MEISSNER and OCHSENFELD used two tin cylinders 
with parallel axes orientated perpendicular to the magnetic field.  With their appa-
ratus, they found a ratio s / n  1.70, in remarkable agreement with the predicted 
value from calculations of 1.77. 

2.8 - Non-simply-connected superconductor 

In section 2.3 we saw that a superconductor excludes the magnetic field in its bulk 
and, in particular, never traps a flux inside itself. Let us now see what happens to a 
superconductor that is not “simply connected”,12 for example a punctured disc, and 
the possibility of trapping a magnetic field in a hole surrounded by supercon-
ducting material. To do this we will repeat the two procedures of turning on and 
then off the magnetic field, as in section 2.3. 
                                                        
12 A solid is simply connected if any loop can be transformed to a point by continuous 

deformation. We also say that any loop is then homotopic to a point. A hollow sphere is 
simply connected, whereas a sphere with a hole drilled from one side to the other, or a 
torus, is not. 
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» Sequence 1 - after cooling in zero field, a magnetic field is applied and then 
turned off while staying in the superconducting phase. 

» Sequence 2 - the field is applied in the normal phase, and then is turned off in the 
superconducting state after cooling in the field. 

We follow the behavior of the magnetic field in each case. 

2.8.1 - Sequence 1: cooling in zero field 

A disc with a hole is cooled in zero field 
below the critical temperature Tc of the 
superconducting transition of the material. 

 

A magnetic field B0 is applied parallel to 
the axis of the disc. The field lines go 
around the superconductor, with the ap-
pearance of screening currents at the outer 
edge of the disc.  

The field B0 is cut, the screening currents 
disappear, and we recover the initial state.  

2.8.2 - Sequence 2: field cooling 

 

The magnetic field is applied at high tem-
peratures. It is uniform in the material and 
in the hole. 

As we pass the transition under applied 
field, superconducting currents appear
near the inner and outer surfaces in order 
to “expell” the magnetic field from the 
superconductor. 
We note that they turn in opposite direc-
tions. The field lines are pushed towards 
the exterior and interior spaces. 
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When the field B0 is turned off, the flux 
through the hole stays trapped. There re-
main both an interior screening current 
which preserves the magnetic field in the 
hole and an exterior current (which has 
reversed its direction) which prevents the 
returning flux lines from penetrating the
sample. 

2.8.3 - Conclusion 

As we saw in the two sequences, at no moment, even temporarily, does the magnet-
ic field cross the superconductor: neither after cooling in zero field, in order to 
transport the flux in the hole as the field is applied, nor after cooling in the field, 
then reducing this field to zero, in order to expel the flux initially in the hole. 

2.9 - Analysis from the point of view of energy 

2.9.1 - Energetic interpretation of the LONDON penetration depth 

To go beyond electromagnetic and phenomenological arguments, it is now urgent 
to reconsider the LONDON penetration depth and see whether there is a stronger 
reason why both the magnetic field and the current density should decrease on the 
length scale L, and not on some other scale. 

To examine this question, we make the hypothesis that in a semi-infinite supercon-
ductor the magnetic field does decrease from the surface exponentially, but that it 
does so on a length-scale  that is a priori unknown, 

 B(u)  B e
u

.  (2.48) 

Then by MAXWELL’s fourth equation the current density decreases with the same 
length, 

 j(u)  B
0

 e
u
 B(u)

0
.  (2.49) 

We will show that minimizing the energy of the system implies 

  m

0nse2  L.  (2.50) 

To do this, we consider the two relevant energies. 
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Magnetic energy 

The magnetic energy density equals B2/2 0 which, by integration in the direction 
normal to the surface, leads to a surface magnetic energy per unit area 

 Emag 
B2

2 0
e

2u

0
du  B2

4 0
.  (2.51) 

Kinetic energy of the superconducting electrons 

By virtue of their velocity v, the superconducting electrons possess a kinetic energy 
density, 

 ns
1
2

mv2  1
2

m
nse2 j2(r)  (2.52) 

which, after integrating as previously, leads to a kinetic energy per unit surface area 

 Ekin 
1
2

m
nse2

B2

2
0
2 e

2u

0
du  1

4
m

nse2
B2

0
2 .  (2.53) 

The total energy is therefore 

 Etot  Ekin  Emag 
1
4

m
nse2

B2

0
2  B2

4 0
 (2.54) 

and its minimization 
dEtot
d

 0  leads to the equilibrium value  that is none other 

than the LONDON penetration depth 

 2  m

0nse2  L
2. (2.55) 

The LONDON penetration depth L appears as the value of  which minimizes the 
sum of the magnetic field energy and the kinetic energy of the superconducting 
charges inside the superconductor. 

2.9.2 - The second LONDON equation by a variational method 

Armed with this result found from a sample that is assumed semi-infinite, let us 
now demonstrate that the second LONDON equation can be obtained by minimizing 
the sum of the magnetic and electron kinetic energies over the whole volume of a 
superconductor of any shape. 

The magnetic energy stored in the whole sample volume V  is 

 Emag 
B2(r)
2 0

 d3r

V

.  (2.56) 
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The total kinetic energy of the superconducting electrons is written as 

 
 
Ekin 

1
2

mns v2(r)d3r
V

.  (2.57) 

Knowing that the current density is linked to the velocity of the electrons by 
j(r) = ns qe v(r) and taking into account MAXWELL’s fourth equation that connects 
B to j, the kinetic energy of the superconducting electrons becomes 

 
 
Ekin 

1
2 0

L
2 ( B)2d3r

V

 (2.58) 

giving the total energy 

 
 
Etot 

1
2 0

B2  L
2  ( B)2 d3r

V

.  (2.59) 

As required by variational methods with fixed boundary conditions,13 the profile of 
the actual magnetic fields B(r) is that which is “stationary” with respect to the total 
energy Etot, the surface magnetic field being fixed. In other words, B adopts a pro-
file such that to first order,  Etot vanishes for any variation  B(r) of the magnetic 
fields. 

Let us consider then, a small variation of the magnetic field  B(r). The energy var-
iation which results is written 

 
 

Etot 
1

2 0
2B (B)  2 L

2  (  B)  B 
V

d3r  (2.60) 

which, using the vector identity, 

 (u  w)  w (  u) u (  w)  

with w   B and u  × B and STOKES’ law 

 (u  w)dS  (u  w)d3r  

can be written as a sum of bulk and surface terms 

 

 

Etot 
1
0

B(r) B(r)  L
2   B(r) 

V

d3r

Etot   1
0

B(rsurf )  (  B(rsurf )) dS
S

.
 (2.61) 

                                                        
13 The variational method with fixed boundary conditions is the same used when we  

deduce the equations of LAGRANGE from the principle of least action:  C. COHEN-
TANNOUDJI, B. DIU & F. LALOE (1977) Quantum Mechanics - Volume  II, 1481-1497, 
Hermann, Paris, 2nd revised edition. 
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The surface integral always vanishes as, by hypothesis, B is fixed on the surface 
(  B(rsurf)  0). Looking for stationary values of the energy therefore implies that 
the volume integral must vanish for any  B(r), which requires 

 B  L
2  (  B)  0. (2.62) 

By use of the fourth equation of MAXWELL, 
 B = 0 j, this relation leads to the 

second LONDON equation (relation 2.26). 

Thus LONDON’s equation has a deep meaning in terms of energy, as it follows from 
a principle of the stationary value of the sum of magnetic energy in the sample and 
the kinetic energy of the superconducting electrons. 

2.10 - Description of superconductivity in fluid-mechanical terms 

Rather than starting with a perfect conductor, an alternative approach to deriving 
LONDON’s equations is by reference to the equations of fluid mechanics.14 
For this purpose we consider a non-viscous fluid consisting of particles of mass m, 
density ns each bearing a charge qe. If subject to electric E and magnetic B fields   
and in the absence of viscosity, each particle has dynamics governed by the  
equation 

 m dv
dt

 qe(E  v  B)  (2.63) 

which using the relation (appendix 2A, relation 2.105), 

 dv
dt

 v
t
 1

2
v2 v  (  v)  (2.64) 

leads to the equation 

 v
t

qe
m

E  1
2

v2  v   v  qe
m

B .  (2.65) 

Taking the curl of the two sides of the equation (i.e. applying ), using the 

MAXWELL equation  E  B
t

 and defining, 

 
 
w   v  qe

m
B  (2.66) 

we have, in addition, w
t
  (v  w).  (2.67) 

This relation is known in hydrodynamics as the HELMHOLTZ equation, and is a first 
order linear differential equation. With the specific boundary condition w  0 at 

                                                        
14 For the complete derivation, see F. LONDON (1960) Superfluids - Macroscopic theory of 

superconductivity - Volume 1, Dover, New York, 27-95. 
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t  0, w stays zero for all times. The “fluid mechanical” approach to the LONDON 
equations consists, then, in proposing that the superconductor behaves as a non-
viscous liquid satisfying the HELMHOLTZ equation in which we require that in all 
circumstances 
 w  0. (2.68) 

Substituted in equation (2.65), with the definition (2.66) of w, leads to the equa-
tions 

 
  

v
t
½ v2 

qe
m

E  (2.69) 

 
 
 v 

qe
m

B.  (2.70) 

Equation (2.69) is none other than the first LONDON equation (2.23) with the addi-
tion of the non-linear term ½ v2 that LONDON13 showed to be very small. In fact, 
in the literature, depending on the author, we find both forms of the first LONDON 
equation, with and without the non-linear terms. 

The relation (2.70) leads, using j  ns qe v, to the second LONDON equation (2.26). 

Two remarks 

» This approach suggests, and in fact this is true, that the equation (2.70) is more 
general than LONDON’s second equation and that we should return to it if, for 
some reason the relation j  ns qe v is not satisfied (see, for example, the problem 
of the LONDON moment of a rotating superconducting sphere to be discussed in 
the following paragraph). For this reason, the relation (2.70) will be called the 
“root” of the second LONDON equation. 

» The “fluid-mechanic” approach is similar to the “inductive” approach developed 
in section 2.4.3, in the sense that we impose specific conditions on general equa-
tions. To propose w    0 and its corollary w/ t    0 is the paralell of the  
replacement of B/ t  0 by B  0. 

2.11 - The LONDON moment 

2.11.1 - Intuitive approach 

By adopting the “fluid mechanics” view of the previous section, BECKER and co-
workers15 analysed the effect of the rotation of a superconducting sphere on one of 
its axes. 

The scenario is as follows: 
» initially the sphere is at rest, B  0, v  0, w  0; 

                                                        
15 R. BECKER, F. SAUTER & G. HELLER (1933) Z. Physik 85, 772. 



2 - LONDON THEORY 39 

» the sphere and the positive charges, the “ions”, that are rigidly tied to it, are sent 
into rotation. But owing to the lack of viscosity the superconducting electrons 
stay at rest, leading to an increasing “ionic” current inside the sphere; 

» the “ionic” current generates a magnetic field B within the sphere; 
» this increasing field induces currents which oppose its cause. This means they 

tend to cancel the initial currents, something they can do only by imparting a  
velocity v  0 to the superconducting electrons which then start to move; 

» in the limit where the rotational speed of the electrons catches up to that of the 
ions, the current density goes to zero everywhere in the sample and the internal 
magnetic field completely disappears. This leads to a contradiction since we 
would have a state where B  0 and v  0 with  v  0, and therefore w  0, 
which contradicts the originally assumed (2.68); 

» intuition, and our calculations will back this up, tells us that the electrons towards 
the outside, those within a penetration depth, will turn less quickly than the ions, 
and create a current loop generating a magnetic field B inside the sphere such that 
at every point in the sphere w = 0; 

» the magnetization associated with this field B constitutes the LONDON moment. 

Figure 2.12 - A rotating
superconducting sphere

A superconducting sphere in rotation generates in
its interior (below L) a uniform magnetic field B.

This field is caused by currents concentrated
within a LONDON penetration depth, resulting

from the difference in velocities of the
electrons and the ions fixed to the sphere.

2.11.2 - Calculating the LONDON moment 

Let v be the speed of the superconducting electrons, v0 the velocity of the ions and 
 the angular velocity of the sphere. By definition, 

 v0   r .   (2.71) 

The relations between the electron velocity v, the current density j and the magnet-
ic field B are rather unusual since the current density is written 
 j  ns qe (v  v0) (2.72) 

which, substituted into the fourth MAXWELL equation, gives 
  B  0 j  0 ns qe (v  v0). (2.73) 

In this atypical case, the “root” LONDON equation (2.70) 
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  v 
qe
m

B  (2.74) 

cannot be transformed into the second LONDON equation because j and v are con-
nected by (2.72) and not (2.6b). 

In addition, noticing that  v0  2  and therefore 
  (  v0)  0 (2.75) 

we can verify that the relations (2.73), (2.74) and (2.75) lead to 

   (v v0 )  1

L
2 (v v0 )  (2.76a) 

and that, in so far as we are looking for a stationary state, we have, 
  j  ns qe 

 (v  v0)  0. (2.76b) 

As a consequence the equation (2.76a) can be written in the form 16 

 2(v v0 )  1

L
2 (v v0 ).  (2.77) 

On the other hand, using the relations (2.71) and (2.74) and the fact that, as w is 
constant, its curl vanishes, we see that the fourth MAXWELL equation leads to the 
relation 

 
  
  B  2m

qe
 1

L
2 B  2m

qe
 (2.78) 

and since  B  0 by the third MAXWELL equation and    0 as we are in a 
steady state, we can also write 

 
 

 B  2m
qe

 0  (2.79) 

which leads finally to, just as in (2.77), 

 
 
2 B  2m

qe
 1

L
2 B  2m

qe
.  (2.80) 

Equations of the type of (2.77) and (2.80) have been solved in sections 2.2 and 2.4. 
Their solutions are functions that vanish in the bulk except for a layer of thickness 
of order L near the surface, which appears as a transitional zone. Below a thick-
ness L, therefore 

 
 
v  v0 and B  2m

qe
 (2.81) 

                                                        
16 2A  (  A)   (  A) 
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which signifies that the speed of the electrons inside the sphere has caught up with 
that of the ions and that the magnetic field there is uniform (and not zero!). 

In the Appendix to Chapter 4 (section A4.1) we recall that to establish a uniform 
magnetic field B inside a sphere, it is necessary to form a distribution of circular 
surface currents, with axes parallel to the direction of the field, and whose intensity 
is (see Fig. 4.15) 

 jsurf 
3

2 0
Bsin  (2.82) 

where  is the azimuthal angle measured from the axis of magnetization of the 
sphere. These are currents that develop over a layer of thickness L and are caused 
by the superconducting electrons rotating more slowly than the ions. 

The magnetization below L is then (see App. 4, section 4.1, Tables 4.6 and 4.7; 
N =  for a sphere) 

 M  3
2 0

B  3m
0e

 (2.83) 

and the total moment of the rotating sphere of radius R  L, to be called the 
“LONDON moment” equals 

 
 
M  4 R3m

0e
  (2.84) 

Predicted by BECKER et al. in 1933,15 worked out in detail by LONDON,14 the 
LONDON moment was measured for the first time by HILDEBRANDT en 1964.17 It 
was recently used in an extremely precise experiment aiming to measure the curva-
ture of space-time near the Earth (The Gravity Probe B Experiment).18 

2.12 - The LONDON equation in the LONDON gauge 

2.12.1 - The concept of gauge 

In electromagnetism, the electric E and magnetic B fields, 

 
 
E  V A

t
; B   A  (2.85) 

are derived from a pair of scalar and vector potentials (V, A) which are not unique 
since the same electromagnetic field (E, B) can stem also from a pair (V ’, A’)  
related to the pair (V, A) by the transformation 

 
 
V ’  V (r,t)

t
and A’  A  (r,t)  (2.86) 

                                                        
17 A.F. HILDEBRANDT (1964) Phys. Rev. Lett. 12, 190. 
18 See the site: http://einstein.stanford.edu/ 
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where  (r, t) is a scalar function of space and time. 

Such a change of potentials is called a “gauge transformation” and the choice of the 
pair (V, A) is called a “gauge fixing”. 

For each problem one can chose the most practical gauge that leads to the simplest 
equations most directly. For example, for the propagation of electromagnetic waves 
the LORENTZ gauge is usually used, 

 A  0 0
V
t
 0  (2.87) 

as it has the advantage of symmetrizing the space-time equations of potentials A 
and V and to have them appear as wave equations. 

2.12.2 - The LONDON gauge 

By replacing B by 
 A in the second LONDON equation (2.26) it becomes 

  j 1

0 L
2 A  0  (2.88) 

which can be integrated by noting that the curl of a gradient is zero, so that 

       j 1

0 L
2 A  (r,t) or, equivalently, j  ns qe

m
(r,t) qeA  (2.89) 

where the integration constant  (r, t) is any scalar function of space and time. 
As the current density j is a measurable quantity, and hence a physical quantity that 
must be invariant under gauge transformations, it follows that the gradient of the 
integration constant  (r, t) and the vector potential A cannot be independent: to 
choose one is to determine the other. The choice of the LONDON gauge has the ef-
fect of making the equations for A and j resemble each other. 

Now j is subject to two physical constraints: 
» conservation of charge, which in a stationary state is written 
 j  0  (2.90) 

» the impossibility of the current to leave the superconductor, which forces the 
component of the current density j along the normal n to the surface to vanish 

 j n surf  0.  (2.91) 

The LONDON gauge consists of imposing the same constraints on the vector poten-
tial A as on j 

 
 

A  0 in the bulk
A n surf  0 at the surface.

 (2.92) 
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Applying the divergence and the scalar product with the normal to the two lines of 
equation (2.89) gives, using the vector relation     2  , the two relations 
 2    0   and   n     0 at the surface.  (2.93) 

2.12.3 - The second LONDON equation in the LONDON gauge 

The relation 2    0 associated with the continuity of  makes this function a 
harmonic function with the property of being constant in a simply connected11 vol-
ume if the component of its gradient normal to the surface is zero.19 

With this property of , the relation (2.89) becomes 

 
 
j(r) 

ns e2

m
A(r)  1

0 L
2 A(r)  in the LONDON gauge.  (2.94) 

Thus, in the LONDON gauge, where we impose the choice  A  0 and n  A  0, 
A and j are proportional. As a corollary, the vector potential satisfies the same 
equation as j and B (relations 2.27) or 

 2A A

L
2  0.  (2.95) 

2.12.4 - Momentum p and the LONDON equation 

The momentum p of a particle of charge qe, placed in the magnetic field of vector 
potential A is (see App. 9.1) 20 

  p  mv  qeA .  (2.96) 

The LONDON equation can also be obtained with the postulate that its curl be zero. 
Indeed, using B = 

 A, we have 

 
 
1
m

 p   v  qe
m

B  0  (2.97) 

which is none other than the equation (2.74), that is to say the “root” second 
LONDON equation that again appears to be the more fundamental. The usual second 
LONDON equation is found by writing j  ns qe v. 

If, in addition, we require p = 0, we obtain, in the LONDON gauge 

 p  m
nsqe

j qeA  0   (2.98) 

which is the LONDON equation in the LONDON gauge! 

                                                        
19 See Appendix 2B. 
20 C. COHEN-TANNOUDJI, B. DIU & F. LALOE (1977) Quantum Mechanics - Volume II, 

1481-1497, Hermann, Paris, 2nd revised edition. 
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The LONDON gauge in a simply connected superconductor is that for which the 
momentum p of the superconducting electrons is set to zero. 

Note - in contrast to the “quantity of movement” mv, which is measurable and 
should be gauge-independent, the “conjugate” momentum p is a non-physical 
quantity dependent on the choice of gauge. In quantum mechanics the wave-
vector k of the wave associated with a particle is related to this momentum p, via 
the relation p  k. 

2.12.5 - Non-simply-connected superconductors 

If a superconductor is not simply connected, the relations  A  0 and n  A  0 
turn out to be insufficient on their own to define a gauge. We must add to them a 
relation giving the circulation of A on each closed loop  around a given hole 
(which opens out in two different places of the surface). 
 

 
A dl  .  (2.99) 

We shall come back in length to this point in Chapter 9, which will be devoted to 
the effects of coherence. 
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Appendix 2A 
 
Total and partial derivatives with respect to time 

Let us consider the movement of a fluid such as water where each elementary par-
ticle moves with a velocity v(r, t) that depends on its position and the time. 

Let r0 be the position of a particle at time t0 and (r0  dr) its position at time 
(t0  dt). Clearly we have dr  v(r0, t0) dt. 

If F represents the net result of the various forces acting on this particle, during  
the time interval dt the change in its velocity is given by the fundamental law of 
mechanics 

 
 
F  m dv

dt
.  (2.100) 

This change in velocity dv can be divided into two terms: 
» as the fluid changes in time, the velocity of particles located at r0 at time t0  dt 

exceeds by v
t r0

dt  that of particles located at r0 at time t0. v
t r0

is the local 

acceleration at the point r0; 

» at time t0 the velocity of particles located at r0  dr exceeds by 
v
r t0

dr
 
that of 

particles found at r0. 
Combining these two contributions gives 

 
  
dv  v

t r0

dt  v
r t0

dr  (2.101) 

which is written, for example for the vx component 

 
 
dvx 

vx
t

dt  vx
x

drx 
vx
y

dry 
vx
z

drz  (2.102) 

or, dividing by dt 

 dvx
dt


vx
t


vx
x

vx 
vx
y

vy 
vx
z

vz .  (2.103) 

For each component vi we then have 

       
dvi
dt


vi
t


vi
rj

drj

dtj


vi
t
 v j rj

vi 
vi
t
 (v j j )vi

jj
 (2.104) 

which is written in vector form as, 

 dv
dt

 v
t
 (v )v  v

t
 1

2
v2 v  (  v).  (2.105) 
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Appendix 2B 
 
Property of a harmonic function for which the component to the 
surface normal of the gradient vanishes 

By hypothesis,  is a function of r such that 
 2   0    and      n  0 at the surface      (2.106a) 

Consider the vector   . Like any vector, it obeys STOKES’ law 

  dS
S


V

d3r  (2.106b) 

where S is a closed surface and V  the volume bounded by this surface. With the 
vector relation 

    (2.107) 

this leads to dS
S

  
V

d3r 
V

2d3r .  (2.108) 

As dS is oriented in the sense of a normal n pointing outwards, we have 
 dS

S
 n

S
dS  0.  (2.109) 

Since 2  is zero, 
V

d3r  2

V
d3r  0  (2.110) 

leading to 
 V

2d3r  0  (2.111) 

and as the integral of a never negative function can vanish only if the function is 
everywhere zero, 

  0     i.e     is a constant. 
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Appendix 2C 
 
Modified BESSEL functions 

The “modified BESSEL functions of order  ” of the first kind Iv (x) and of the se-
cond kind Kv (x) are the particular solutions of the following differential equation, 

 d2 y
dx2  1

x
dy
dx

1 v
x

2
y  0.  (2.112) 

The general solution is then written 
 y(x)  A 

Iv (x) + B 
Kv (x). (2.113) 

These are, in two dimensions, the equivalent of the increasing and decreasing ex-
ponentials that we are familiar with in one dimension. 

I K

I

I

I

K

K

K

(a) (b)

 
Figure 2.13 - Graphical representation of the modified BESSEL functions of order 0, 1 and 2 
(a) Modified function of the first kind Iv(x) - (b) Modified function of the second kind Kv(x) 

In the neighborhood of the origin (x  0) 

For values of x close to 0, the functions Iv (x) have the expansions 

 
 
I0(x) 1 x2

22  x4

2242  x6

224262   (2.114) 

 
 
I1(x) x

2
 x3

224
 x5

22426
  (2.115) 

while the functions Kv (x) diverge, 
 K0(x) ln x  (2.116) 

 
 
K1(x) 1

x
.  (2.117) 
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Asymptotic behavior at infinity (x  ) 

When x is very large, Iv (x) and Kv (x) are dominated by increasing and decreasing 
exponentials respectively 

 
 

Iv (x) 1
2 x

 ex  (2.118) 

 
 

Kv (x) 1
2 x

 e x .  (2.119) 

The modified BESSEL functions are related to one another by many relations such as 

 
 

dI0(x)
dx

 I1(x)  (2.120) 

 xI0(x)dx  xI1(x).  (2.121) 



Chapter 3 
 

THE NON-LOCAL PIPPARD EQUATIONS 

While LONDON theory is actually rather simple, there are in fact non-local phe-
nomena inherent to superconductivity that enter the picture and modify the rela-
tions between the current density and the magnetic field. This brief chapter will 
extend the description of LONDON theory, and allow us to become familiar with the 
non-local character of superconductivity. This concept can be a little disturbing at 
first sight. 

3.1 - Origin of the non-local equations 

By increasing the concentration of impurities of indium in superconducting tin, and 
thereby reducing the mean free path of the electrons in the normal phase, PIPPARD 1 
observed that the penetration depth of the magnetic field increased while the ther-
modynamic properties of the superconducting phase were unchanged (Tc was not 
modified). Inspired by the non-local relation proposed between the current densi-
ty j(r) and the electric field E(r) to explain the anomalous skin effect by REUTER 
and SONDHEIMER and, later, CHAMBERS,2 

 
  
j(r)  3

4
(r r’) E(r’)

|r r’|4
(r r’) e

r r’
d3r’  (3.1) 

where  is the electrical conductivity and  the mean free path of the electrons, 
PIPPARD proposed the relation (3.25) between the current density j and the vector 
potential A which will figure at the end of this chapter. 

In fact later work showed that the magnetic penetration depth, named now , dif-
fers from the theoretical LONDON penetration depth L because of two very differ-
ent mechanisms: one intrinsic, due to the nature of the COOPER pairs, the other ex-
trinsic, that adds to the previous one when the superconductor has a high concen-
tration of impurities reducing the mean free path (i.e. is a “dirty” superconductor). 

                                                        
1 A.B. PIPPARD (1953) Proc. Roy. Soc. A 216, 547. 
2 G.E.H. REUTER & E.H. SONDHEIMER (1948) Proc. Roy. Soc. A 195, 336. 

 R.G. CHAMBERS (1952) Proc. Phys. Soc. (London) A 65, 458. 
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This was a distinction that PIPPARD could not have made at the time. With the ben-
efit of hindsight, and in order to clearly separate these two contributions, we will 
discuss first the case of the pure superconductor, and afterwards the dirty super-
conductor that PIPPARD had addressed directly with his formula (3.25). 

3.2 - Non-locality in pure superconductors 

The intrinsic non-locality originates in the fact that superconductivity is carried by 
COOPER pairs formed by two electrons that can be very far apart (up to several 
hundreds of nanometers), while intuitively the current density j(r) may be better 
identified with the displacement of their centers of gravity. With such a description, 
we might well question the local form of the proportionality between j(r) and A(r) 
(eq. 2.94) since, if they are far apart, the two electrons of the same COOPER pair can 
“feel” very different values of the vector potential (Fig. 3.1). 

Figure 3.1 - COOPER pairs in a  
non-uniform vector potential  
The figure represents COOPER pairs with the 
same centrer of gravity in a non-uniform 
vector potential A. As they are separated 
by an average distance 0 two electrons in 
the same pair “feel” different values of A. 

Should we retain LONDON’s equation (2.94) by taking for A its value at the center 
of gravity of the COOPER pair, or should we instead use some averaging, taking into 
account the values of A where the electrons actually are? The experimental results 
show that the second solution should be retained. In the LONDON gauge, this leads 
us to write, by analogy with the anomalous skin effect which has similar origins, 

 j(r) 
ns e 2

m
K

(r r’) A(r’)
|r r’|4

(r r’) e
|r r’|

0 d3r’  (3.2) 

where 0 is (at 0 K) the average value of the distance between two electrons in the 
same COOPER pair. 

For a more thorough analysis, this expression can be put in the form 

    
j(r) 

ns e 2

m
3

4 0

(r r’) A(r’)
|r r’|

(r r’)
|r r’|

1
|r r’|2

e
|r r’|

0 d3r’  (3.3) 

where: 
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»  the first (square) bracket expresses the projection of the vector A(r’) on the direc-
tion (r’-r); 

»  the second (square) bracket represents the weighting of A(r’) in the integral. This 
weight decreases exponentially with the distance between r and r’, with charac-
teristic length 0; 

»  the value 3/4 0 taken for the normalisation K is chosen so that if the action of 
the vector potential on the charge carriers becomes purely local, or if A(r) is uni-
form over distances greater than 0, we recover the LONDON equation (2.94). 

To summarize, we can also write 

 
 
j(r) 

ns e 2

m
A

0
(r)  1

0 L
2 A

0
(r)  (3.4) 

where A
0
(r)  is a vector potential averaged, as in (3.3), over a volume of charac-

teristic dimension 0. 

Note  -  the length 0 can be identified with the BCS coherence length at 0 K 
 0  BCS (T  0). (3.5) 

At finite temperatures it is still 0, as defined by (3.5), that we must introduce into 
the relation (3.2). j(r) depends on the temperature only via the penetration 
depth L. 

3.3 - Penetration depth of the magnetic field 

We saw in the previous chapter (section 2.5) that in a sufficiently thick supercon-
ducting sample, the magnetic field B and the current density j decrease exponen-
tially from the surfaces with a characteristic length L. Without altering the evanes-
cent nature of the magnetic field and the screening currents associated, the  
non-local PIPPARD relation will modify the laws governing the decrease of these 
variables within the sample. 

Experience shows that, to a first approximation, we can still keep the exponentially 
decreasing form of the magnetic field and the current density by writing the rela-
tion (3.4) as a local equation, 

 
 
j(r)  1

0 L
2 A

0
(r) 1

0
2 A(r)  (3.6) 

provided the LONDON penetration depth scale L is replaced by an effective mag-
netic penetration depth . 

A priori, this length  is a function of the characteristic lengths L and 0 and we 
can find different approximations for it in the literature. Close to a plane surface 
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from which j and A decrease in the perpendicular direction n, two limiting cases 
can be imagined: 
»  0  L  A(r) varies little in a sphere of diameter 0 over which the aver-

age (3.3) is taken: 

 A
0
(r) A(r)  ,  j(r)

nse2

m
A(r) and L  ( 0  L).  (3.7)

 
»  0  L  A(r) takes a non-zero value only on a distance  small compared  

to 0. Integration of (3.3) shows that, 

 A
0
(r)

0
A(r)  (3.8) 

leading to 
 
j(r) 1

0 L
2

0
A(r)  1

0
2 A(r)   (3.9) 

with  L
2

0 1/3
 L

0

L

1/3

 0
L

0

2/3

 ( 0  L).  (3.10) 

As shown in Table 3.1, the penetration depth  derived from the relation (3.9) is 
always greater than the LONDON penetration depth L; the more 0 exceeds L, the 
greater is this difference. 

Table 3.1 - Effect of the coherence length on the  
effective LONDON penetration depth predicted by the relation (3.9) 

0
 / L 3 4 5 6 

 / L 1.442 1.587 1.710 1.817 

3.4 - FOURIER analysis of the PIPPARD equations 

The non-local expression (3.3) for the relation between the current density j and the 
vector potential A can in fact be written in a more general form 

 
 
j(r)  K

0 L
2 A(r’) uR uR  F(R)

R2 d3r’  (3.11) 

where: 
› uR is the unit vector in the direction R = r’  r; 
› [A(r’) · uR]uR is the projection of A(r’) along R; 
› F(R) is a weighting function which, in the special case of expression (3.2), equals 

e R/ 0; 
› K is a normalizing factor [3/4 0 for the special case of (3.2)] allowing the rela-

tion (3.11) to reduce to the LONDON equation (2.94) when A tends to the limit 
where it is uniform on the scale of a correlation length. 
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To go further, consider a vector potential A(r) restricted to a single FOURIER com-
ponent, 
 A(r) = A(q) eiq ·r  (3.12) 

which in the LONDON gauge ( · A(r) = 0), satisfies 
 q  A(q) = 0. (3.13) 

By choosing the wave vector q in the z-direction, A along the x-axis, and writing R 
in spherical coordinates (Fig. 3.2), 

 

 

q =
0
0
q

A =
A
0
0

R =
Rsin cos
Rsin sin
Rcos

uR =
sin cos
sin sin
cos

.  

Figure 3.2
Spatial configuration of the

vector potential and of the wave
vector of its FFOURIER component

As r is fixed, the element of volume of integration is 
 d3r’ = R2 dR sin  d  d  (3.14) 
and rewriting A(r’) = A(q) eiq ·r  eiq · (r’ r) 
 uR

  A(r’) = A eiq ·r  sin  cos  eiqR cos 
 (3.15) 

the only non-zero component of j is 

    jx (q) =
nse2

m
K A(q)eiq r cos2 d0

2 sin3 eiqRcos d0
2

0
F(R)dR  (3.16) 

which, since j and A are collinear, allows us to write a vector equation 

 
 
j(r) = 1

0 L
2A(q) (q)eiq r = j(q)eiq r  (3.17) 

with j(q) = 1

0 L
2 (q)A(q)  (3.18) 

and (q) = 4 K j1(qR)
qR

F(R)dR
0

 (3.19) 
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where 

 j1(x)  sin x
x2

cos x
x

 (3.20) 

is the spherical BESSEL function 3 of order 1. As the function j1(x)/x is oscillating, 
 (q) resembles somewhat the FOURIER transform of F(R); in fact it is a variant of 

the HANKEL transform. 

The equation (3.11), which was non-local in real space, has now become “local” in 
the space of wave-vectors, since the vector j(q), the FOURIER component of j(r), is 
equal to a simple product of the scalar  (q) and the FOURIER component A(q).  (q) 
is a “response function”. 

This analysis calls for several remarks: 

»  If the field A(r) is uniform over a distance greater than 0, only the components 
A(q = 0) and j(q = 0) are non-zero. The current density j is uniform and propor-
tional to A and we must have (q = 0) = 1 in (3.18), in order to recover the 
LONDON equation (2.94). By replacing in (3.20) j1(qR)/qR by , the limiting val-
ue for j1(x)/x when x  0, this normalization requires 

 K  3
4

1
F(R)dR0

. (3.21) 

For F(R) = e R/ 0, we find K = 3/4 0, which we recognize as the normalization 
coefficient of formula (3.2). 

»  By using (3.21), the expression (3.19) can also be written 

 (q)  3

j1(qR)
qR

F(R)dR
0

F(R)dR0

.  (3.22) 

»  As F(R) is a decreasing function of R, 

 0 
1

F(0)
F(R)dR0  (3.23) 

is a measure of its spatial extension, as is clearly seen for the special case of 
F(R) = e R/ 0. 

                                                        
3  As well as having other properties, j1(x)/x is an oscillating function which behaves at the 

origin as 1
3

1 2x2

5
and decreases asymptotically for large x as 1/x2; in addition we 

have j1(x)
x0

dx 
4

.  
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For  large  q,  (q) 4  F(0)K j1(qR)
qR0

d(R) 3
4q 0

,  which  means  that  the 

larger the value of 0 the faster (q) decreases. Therefore, if F(R) extends over 0, 
 (q) is of order 1/ 0 (Fig. 3.3). F(R) and its transform  (q) share the property of 

conjugacy with FOURIER transforms, namely that their widths  R and  q satisfy 
the “uncertainty principle” (Fig. 3.3), 

  R  q    1. (3.24) 

»  When 0 tends to 0, F(R)

F(R)dR0

 becomes the DIRAC distribution  (R), and  (q) 

tends to 1 (relation 3.19). We then have 
 
j(q) = 1

0 L
2A(q)  for any wave vec-

tor q, which leads once again to the local LONDON equation (2.94). 

 
Figure 3.3 - Local (LONDON) or non-local (PIPPARD) characters 

  of the response function of superconducting electrons 
(a) Real space (r) - In the LONDON model, the current density is locally proportional to 
the vector potential and the weighting function F(R) is a DIRAC delta function at R = 0. 
In the PIPPARD model, the current density is proportional to a weighted average of the 
vector potential. The weight factor F(R) extends over a distance 0. (b) The space of 
wave-vectors (reciprocal space) (q) - The response function  (q) takes the constant 
value 1 in the LONDON model while it decreases over a range 1/ 0 in that of PIPPARD. 

3.5 - “Dirty” superconductors 

We can now come back to the measurements on samples of tin containing a varia-
ble concentration of indium atoms, which showed that the effective penetration 
depth of the magnetic field increases when there is a decrease in the mean free path 
of the electrons as measured in the normal phase (Fig. 3.4). 
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These observations lead PIPPARD to write 

  
 
j(r) 

ns e 2

m
3

4 0

(r r’) A(r’)
|r r’|

(r r’)
|r r’|

1
|r r’|2

e
|r r’|

p d3r’  (3.25) 

which is rather different from (3.3), since even if the coefficient K = 3/4 0 is iden-
tical, the weight of the contribution of A(r’) is significantly reduced. The distance 
over which the exponential is reduced is no longer 0 but a length P, called the 
“PIPPARD length”, which was later shown to be connected to the intrinsic coher-
ence length 0 and the mean free path of the electrons  by 

 1
p
 1

0
 1  (3.26) 

suggesting that the mean free path of the electrons now limits the natural extent of 
COOPER pairs. 

 

Figure 3.4 - Effect of impurities 
on the penetration depth 
Variation of the penetration 
depth  as a function of the 
mean free path  of electrons  
in the normal state. 
[From PIPPARD, 1953, Fig. 1, 
p. 551, © The Royal Society] 1 

Qualitatively, this substitution of 0 by P in the exponential without changing the 
expression of K, in which 0 still enters, lessens the weight of A(r’) and reduces 
j(r), which consequently increases the distance  needed to screen an external 
magnetic field. 

An extreme case is that of a superconductor in which the mean free path  is very 
small compared to 0 and L and where therefore P  . With the same arguments 
that lead to equation (3.6), the response is found to be local, but the weight of the 
contribution of A is found to be reduced by a factor P

 / 0. We have, therefore, 

 
 
j(r) 

ns e2

m
P

0
A(r) 1

0 L
2

0

A(r)  1

0
2 A(r)  (3.27) 

which leads to  L
0  (3.28) 

(   L
 ,   0

 , P  ). 
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Table 3.2 summarizes the different limiting behavior that we may find. In the  
literature we find other approximations corresponding to intermediate situations.4 

Table 3.2 - Different forms of dependence of the magnetic penetration depth  
according to the relative values of L, 0 and  

Pure superconductor Dirty Superconductor 

Type II Type I Always Type II 

0  L 0  L 
  L      0 

  0   L 
P  0  L P  0  L P   

  L   ( L
2

0)  L 0  

 

                                                        
4  See, for example, J. WALDRAM (1996) Superconductivity of metal and cuprates, Insti-

tute of Physics Publishing, Bristol and Philadelphia, Chap. 7. 



Chapter 4 
 

THERMODYNAMICS  
OF TYPE I SUPERCONDUCTORS 

A decisive step in the history of superconductivity was the recognition that there 
was a true phase to be reckoned with, and the aim of this chapter is to bring a ther-
modynamic description of that phase. We will restrict ourselves here to the case of 
type I superconductors whose superconducting and normal phases are separated in 
the (H, T ) plane by a single line 1 defining the critical field Hc(T ) (Fig. 4.1a). 
Type II superconductors, where a mixed state appears, will be treated in Chapter 6. 

 
Figure 4.1 - Type I superconductor 

(a) The superconducting and normal states are separated by a single line Hc(T ). (b) In the 
superconducting state the magnetization M is equal and opposite to the field H,2 which 
makes it a perfect diamagnet. In the normal state, the magnetization vanishes, but in fact the 
normal state is very weakly diamagnetic.  is the magnetic susceptibility defined by M   H. 

                                                        
1 Type I superconductors are, without exception, pure metals of a single element. A few 

pure metals of a single element, such as niobium and vanadium, are of type II, as are all 
alloys and compounds. 

2 In this book we will encounter H and B on numerous occasions. The notation in the 
literature follows (at least) three different conventions. The first is to call H “the mag-
netizing field” and B the “magnetic field.” The second has H the “magnetic field” and B 
the “magnetic induction.” The third denotes B the “magnetic field” and H the “H field.” 
We have taken the third option. 

© Springer International Publishing AG 2017
P. Mangin and R. Kahn, Superconductivity, 
DOI 10.1007/978-3-319-50527-5_4
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4.1 - Thermodynamic description 

Thermodynamics provides a description for the exchanges between a system and 
its environment in terms of a restricted number of parameters which mask extreme-
ly complex microscopic situations. It relies essentially on two principles whose 
application is described in great detail in textbooks. In practice a thermodynamic 
analysis must proceed in several stages. 
»  The first consists of defining the system and its boundary with the environment. 

Heat and work that the system receives from the environment are defined to be 
positive. 

»  The second step is to introduce the thermodynamic variables: 
› the two universal variables, temperature T and entropy S. From these variables, 

we can write the quantity of heat exchanged during an infinitesimal reversible 
transformation as Q  T dS ; 

› variables specific to each problem that allow us to express exchanges of work. 
These last variables always appear in conjugate pairs (Xi , Yi) where Xi and Yi 
are intensive and extensive variables, respectively. The exchange of work dur-
ing an infinitesimal reversible transformation can be expressed as 

 W  Xi dYi
i

.  (4.1) 

It can be expressed as W   P dV for a system for which the work is  
exchanged by variation of the volume V under the effect of pressure P, 

W  H  dB for a magnetic system, or W   P dV  H  dB when both types 
of work are included. 

»  The third step aims to express the differential forms of thermodynamic functions, 
or their densities 3 when the system is suitable, as is the case here: densities of in-
ternal energy u, of enthalpy h, of free energy f  (the HELMHOLTZ function) and of 
free enthalpy g (the GIBBS function). The equilibrium state generally corresponds 
to an extremum in one of these functions, which then appears as a thermodynam-
ic potential. For the case of the system (P, V ), at fixed P and T, the equilibrium 
state minimizes the free enthalpy, while if V and T are constrained, it is the free 
energy that is lowest. 

»  Finally, going beyond the very general relations that the principles imply, each 
physical system has its own specific properties. These are equations of state that 
connect thermodynamic variables to one another, laws of behavior and numerical 
values of the specific heat, the coefficient of thermal expansion and the coeffi-
cient of compressibility (which, incidentally, may be related). All of these proper-
ties, including the equation of state, are either taken from macroscopic measure-
ments or deduced from microscopic models. 

                                                        
3 The densities of thermodynamic quantities are denoted by lower-case letters. 
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4.2 - The thermodynamic variables of superconductivity 

4.2.1 - The relation between LONDON currents and magnetization 

Magnetic material 

Let us consider “magnetizable” matter placed in an infinitely long solenoid. The 
experimentalist energizes the solenoid by injecting a current j0. The material reacts 
and becomes magnetized, in some cases by forming microscopic magnetic mo-
ments or in others by orienting pre-existing ones. The total magnetic field is then 
the superposition of the magnetic field B0 generated by the current flowing in the 
solenoid and of the field Ba generated by the magnetization M that the material has 
acquired. Now from the point of view of the magnetic fields produced and the en-
ergies involved there is a strict equivalence between a distribution of magnetiza-
tion M and a distribution of surface ja

surf and volume ja
vol current densities. These 

AMPÈRE currents are determined as (see App. 4 for definitions and examples of n, 
ja

surf  and ja
vol) 

 jvol
a   M and jsurf

a  M  n.  (4.2) 

We can therefore consider the system (solenoid + magnetized material) as two 
paired electrical circuits through which flow an injected conductor current densi-
ty j0, for the first, and in reaction an AMPÈRE current density ja associated with the 
the induced magnetization, for the second. 

Superconducting material 

We now replace the “magnetizable” material by a superconductor. When the exper-
imentalist ramps up the solenoid by injecting a current density j0 to create the mag-
netic field B0, the material reacts by forming screening super-currents (LONDON 
currents) localized at its surface (more precisely within the penetration depth). By 
following the inverse procedure to that just described (Fig. 4.2), we can then con-
sider that the material reacts by magnetizing with a magnetization M linked to the 
LONDON currents by the relation (4.2). 

Macroscopically, a superconductor appear as “magnetizable” matter, even though 
its magnetization does not consist microscopically of magnetic dipoles. We can 
then apply the results of the thermodynamics of magnetized materials, both to treat 
exchange between the material and the environment, and to determine the equilib-
rium state. 
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Figure 4.2 - Magnetism-Superconductivity Equivalence 

A magnetic system magnetizes by creating, or orienting existing, magnetic moments. The 
magnetization creates a magnetic field Ba that can be calculated from the equivalent 
AMPÈRE currents. The superconducting system develops screening LONDON currents which 
can be identified with AMPÈRE currents. Because of the equivalence between AMPÈRE cur-
rents and magnetization, the superconductor can be considered as a magnetized material. 

4.2.2 - Thermodynamic systems 

System of solenoid + matter 

In magnetism, the work performed on a system comprising the exciting electrical 
circuit (the external solenoid) and the magnetized material is written (see App. 4.2) 

 
 

Wtot  H(r) dB(r)
all space

d3r .  (4.3) 

»  B  B0  Ba is the total magnetic field, the sum of the field B0 created by the  
currents j0 of the exciting circuit, and the field Ba associated with the AMPÈRE 
currents ja. 

» The field H is defined by 

 H  B
0

M  (4.4) 

but can also be calculated by the use of magnetic poles (fictional in magnetism 
and all the more so in superconductivity) which produce a demagnetizing 
field Hm depending on the shape of the sample. We then have (see App. 4.1), 
 H  H0  Hm  (4.5) 

with 
 
H0  B0

0
.  

As a consequence, inside a superconductor where Bint  0 (except over the penetra-
tion depth), we have the relation, 
 M   H (4.6) 
that makes the superconductor a perfect diamagnet, with magnetic susceptibility 
   1(M   H).  
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In the case of an infinitely long sample (a cylinder or a plate), subject to a magnetic 
field B0 parallel to the large dimension, the demagnetizing field Hm is zero and 
therefore H is uniform, with the same value H  H0 inside and outside the magnet-
ized material. The magnetic field B takes the value Bext  B0 outside the material 
and Bint  0 (H  M) inside. The field configuration is shown in Figure 4.3. We 
can compare it with Figure 4.14 for an ordinary magnetic system, where the 
AMPÈRE currents replace the LONDON currents. The currents are similar, because in 
both case they are created as a response to an external magnetic field. 

Note that in this, and in any of the following figures, even though H and B are not 
in the same units, they are represented by identical arrows whenever they are relat-
ed by B = 0H. In other words, in units of the magnetic field (tesla), what is marked 
as H or M is in fact 0H or 0M. 

 
Figure 4.3 - Field H and magnetic field B 

in a cylindrical superconductor placed in an external solenoid 
The current j0 flowing in a solenoid creates a magnetic field B0 and a field H0  B0/ 0. Be-
cause of the absence of a demagnetizing field (Hm  0), the field H is uniformly equal to H0, 
inside as well as outside the material. Its magnetization is M   H. Inside the material, the 
magnetic field Ba created by the LONDON currents (equivalent to AMPÈRE currents) is equal 
and opposite to B0, which is what gives a vanishing total B. Outside the material, where 
Ba  0 because of the infinite geometry, the total magnetic field is everywhere equal to B0. 

Superconducting matter as a closed system  

As is usual in magnetism, we can reduce the system to the superconducting mater-
ial alone by subtracting from the work Wtot the work Wvac , calculated by rela-
tion (4.3), which we would have had to provide to the solenoid to inject the cur-
rent j0 in the absence of superconducting material (see App. 4.2), 
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Wvac  H0(r) dB0(r)
all space

d3r.  (4.7) 

The work provided to the closed system of “superconducting material only” is then, 

 
 

W  Wtot Wvac  H(r) dB(r) H0(r) dB0(r)
all space

d3r  (4.8) 

or, in the absence of a demagnetizing field, 

 
 

W  H(r) dM(r) 
V

d3r  0V H dM.  (4.9) 

As long as the volume is fixed, we can take the work per unit volume of material 
and write,  
 w  0H  dM . (4.10) 

In the terms of paragraph (4.1), 0M is the extensive variable of the thermodynamic 
system restricted to the superconducting material and H the conjugate intensive 
variable. 

4.2.3 - Interpreting the levitation of type I superconductors 

In general, the energy of interaction between a sample of magnetic moment M  and 
an applied magnetic field B0 is written 
 Einteraction   M   B0 . (4.11) 

Taking into account that the magnetization of a type I superconductor (ignoring 
effects of demagnetizing fields) is 4 
 M   H0 (4.12) 
this energy becomes 

 
 
Einteraction  V M B0  1

0
(B0 )2V  (4.13) 

which leads to a force, 

 
 
F  V 1

0
(B0 )2  (4.14) 

that tends to displace the sample towards the regions of lower field. 

A superconducting block placed above a magnet therefore feels a repulsive force 
that leads it to levitate to a height where the force of repulsion balances its weight. 
The phenomenon of levitation constitutes a proof that the superconductor behaves 
as a magnetic material, whose magnetization develops in the direction opposite to 
the field of the magnet (diamagnetism). 
                                                        
4 For a sample with demagnetizing factor N, the magnetization and the final force are 

reduced by the factor (1  N); this in no way modifies the explanation of levitation phe-
nomena. 
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However, without special care, the sample will “slide” so as to move out of the 
magnetic field. It will be stabilized laterally only if, by positioning magnets appro-
priately, the magnetic field creates a reactive force towards a central axis. If, in the 
mirror-symmetric situation, a magnet is placed above a fixed superconductor, the 
magnet can also levitate. 

We note that the explanation given here is for levitation of type I superconductors 
(and type II in the MEISSNER state). 

For obvious practical reasons, demonstrations of levitation (such as is seen on the 
cover of this book) are usually presented with high critical temperature supercon-
ductors (YBaCuO, for example), which are superconductors of type II. The mecha-
nisms maintaining levitation and lateral stabilization (see section 6.10) are, howev-
er, rather different because of the presence of vortices. They both modify and pin 
the moment M  carried by the superconductor. We will even see that in this case, 
the superconductor can not only levitate, but it can also stay suspended under a 
magnet, a phenomenon that would be inconceivable for a type I superconductor. 

4.3 - Thermodynamic functions of superconductivity 5 

With this new system and its intensive and extensive variables, we can reconstruct 
all the thermodynamic functions. The simplest way to proceed is to start from the 
system (P,V ) that is well known, with W   PdV , and substitute 

 P H and V 0 M .  (4.15) 

The definitions, the differential forms and the MAXWELL’s relations which follow 
are given in Table 4.1. 

Table 4.1 - Thermodynamic functions and MAXWELL’s relations (per unit volume) 
The thermodynamic functions of the magnetic material, and by equivalence, of a superconducting 
medium can be obtained from the system (P,V ) by simply substituting  P by H and V  by 0M. 

Internal energy  
density u du  Tds  0HdM T

M 
s
 0

H
s 

M
 

Enthalpy density h  u  0MH dh  Tds  0MdH T
H 

s
 0

M
s 

H
 

Free energy density 
(HELMHOLTZ) f  u  Ts df   s dT  0HdM s

M 
T
 0

H
T 

M
 

Free enthalpy  
density (GIBBS) g  u  Ts  0MH dg   s dT  0MdH s

H 
T
 0

M
T 

H
 

                                                        
5 See M.W. ZEMANSKY (1957) Heat and Thermodynamics,  

McGraw-Hill Book company Inc., New York, 382. 
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Useful relations and the equilibrium conditions at constant temperature and mag-
netization or at fixed temperature and field H are summarized in Table 4.2. If we 
take the approximation of constant superconducting volume, the extensive varia-
bles can be defined per unit volume and denoted by lower-case letters. 

Table 4.2 - Free energy and free enthalpy densities:  
thermodynamic properties and associated relations 

Fixed Independent Variables 

Temperature T  Magnetization M Temperature T  Field H 

Characteristic functions

f  u  Ts          s  f
T M

 g  u  Ts  0MH          s  g
T H

 

Total differentials

Tds  T s
T 

M
dT  T s

M 
T

dM  Tds  T s
T 

H
dT  T s

H 
T

dH  

Definitions of Specific Heat 

 
CM  T s

T M
 T

2 f

T 2
M

 
 
CH  T s

T H
 T

2 g

T 2
H

 

Equations for Tds

Tds  CMdT  0T
H
T M

dM
 

Tds  CHdT  0T
M
T H

dH
 

Differentials of u and h

du  CMdT  0 H T H
T 

M
dM

 
dh  CHdT 0 M T M

T 
H

dH
 

Specific Heat

CM  u
T M  

CH  h
T H  

Equilibrium state 
Minimum of the free energy density f  

(HELMHOLTZ function) 
Minimum of the free enthalpy density g  

(GIBBS function) 

4.4 - Thermodynamic data 

Beyond these general equations, we still have to introduce the specific thermody-
namic data of the “magnetic system” coming from both its superconducting and its 
normal phases: equations of state, specific heat, equations for the line of phase 
transitions. 
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4.4.1 - Equations of state 

Each phase has its own equation of state: 

Normal phase 

In the normal phase, the magnetization is zero (in reality the system is very weakly 
diamagnetic). The equation of state is, 
 M  0. (4.16) 

Superconducting phase 

In the superconducting phase, the magnetic field B is zero within the sample. 
Through the relation linking B, H and M, the equation of state reduces to (see 
eq. 4.6), 
 M   H. (4.17) 

4.4.2 - Specific heat 

In each phase there are two contributions to the specific heat: the lattice specific 
heat and the electronic specific heat. 

Lattice specific heat C vib 

The lattice specific heat C
 vib is practically the same in the different phases. It arises 

from the vibrations of atoms around their equilibrium positions, the “amplitude” of 
which increases with temperature. C

 vib grows slowly at low temperatures with, in 
the DEBYE model,6 

 
 
Cvib  12 4

5
NAkB

T
D

3
 T  D  (4.18a) 

where NA  the atomic density; D  the DEBYE temperature; kB  the BOLTZMANN 
constant, and then increases rapidly up to the DEBYE temperature, saturating at 
high temperatures where it reaches a limiting value (the law of DULONG and 
PETIT), 
 C

 vib  3NA
 kB

 T  D .  (4.18b) 

Examples of DEBYE temperatures for a few superconducting elements are given in 
Table 4.3. 

Table 4.3 - DEBYE temperatures for a few superconducting elements  

Element Hg Sn Nb Al 

DEBYE temperature D [K]* 72 200 276 433 
* http://www.knowledgedoor.com/2/elements_handbook/debye_temperature.html 

                                                        
6 L.D. LANDAU & E.M. LIFSHITZ (1959) Statistical Physics, Pergamon Press, 180. 
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Electronic specific heat Cn
el in the normal phase 

Superimposed on the lattice specific heat is the electronic specific heat Cn
el, which 

represents the energy gained by the electron gas when the temperature increases by 
1 kelvin. In a model of free electrons, this specific heat is linear in T (see Chap. 8), 
 Cn

el  T (4.19) 
where  is SOMMERFELD’s constant. 

In most metals, Cn
el and Cvib are equal at around 2 to 3 K, with C

 vib  Cn
el for very 

low temperatures and C
 vib  Cn

el for high temperatures (Fig. 4.4).  

Figure 4.4 
Specific heat of a normal metal 
The specific heat of a normal metal 
is the sum of two contributions:  
› C

 vib, the vibrational specific heat 
of the lattice (phonons) that 
greatly dominates at high tem-
peratures and increases as T 3 at 
low temperatures; 

› Cn
el, electronic specific heat, line-

ar in T, dominant at very low 
temperatures. 

Electronic specific heat Cs
el in the superconducting phase 

Measurements (Fig. 4.5) of the electronic specific heat (obtained by subtraction of 
Cvib from the total specific heat) performed on the same material in its normal Cn

el 
and superconducting Cs

el phases 7 revealed three outstanding features: 
»  at very low temperatures, Cs

el increases exponentially with temperature remaining 
less than Cn

el , which increases linearly; 
»  near T ~ 0.6 Tc the electronic specific heat of the superconducting phase Cs

el 
crosses that of the normal phase Cn..

el and exceeds it at higher temperatures; 
»  across the superconductor/normal transition, a strong discontinuity of the elec-

tronic specific heat occurs. At temperature Tc and at zero field, this discontinuity 
is close to 

 Cs
el Cn

el

Cn
el 1.43.  (4.20) 

                                                        
7 Below Tc, Cn

el is measured by applying a magnetic field exceeding the critical 
field Hc(T).  
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Figure 4.5 - Electronic specific heat of aluminum in the normal and superconducting states 

[from N.E. PHILLIPS, 1959, © The American Physical Society, with permission] 8 
› the electronic specific heat of the normal state Cn

el varies linearly with temperature; 
› the electronic specific heat of the superconducting state varies exponentially at very 

low temperatures; 
› the S/N transition shows a discontinuity in electronic specific heat. 

4.4.3 - Phase diagram - The critical field line 

Based on experimental results, several empirical expressions for the critical field 
line separating the superconducting phase from the normal phase have been pro-
posed. The simplest and most popular is TUYN’s law, 

 Hc(T )  Hc(0) 1 T
Tc

2
 (4.21) 

where Tc , implicitly Tc(H  0), is the critical temperature in zero field and Hc(0) the 
critical field extrapolated to zero temperature. 

Other empirical laws, including higher powers of temperature, have also been sug-
gested, justified by better fits to the experimental curves (Fig. 4.6), and they in-
clude higher powers of temperature with for example for tin 5 

 Hc(T )  Hc(0) 1 1.211 T
Tc

2
 0.211 T

Tc

3
.  (4.22) 

It is important to note that all these laws have in common that the slope 
dHc(T )

dT
 

vanishes at 0 K but remains finite at Tc . 

                                                        
8 N.E. PHILLIPS (1959) Phys. Rev. 114, 676. 
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Figure 4.6 
Critical field lines of  
common metallic 
superconductors of type I 
[from D. SHOENBERG, 1952,  
© Cambridge University Press] 9 

Table 4.4 - Critical temperatures Tc at zero field, critical fields Hc(0) at zero temperature  
and slopes of the critical field as a function of temperature, seen in some pure metals 5 

Element Al Cd Ga La Nb* Pb Sn Ta V* 

Tc [K]** 1.175 0.517 1.083 4.880 8.250 7.196 3.720 4.470 5.400 

0 Hc(0) [mT] 10.6 2.88 5.03 103 196 81.2 30.7 86 134 


dHc

dT Tc

[mT K
1
]
 

16.3 8.6 9.3 – – 22.6 14.7 33.4 48.2 

* Niobium and vanadium are type II superconductors. 
** http://www.superconductors.org/type1.htm 

4.5 - The transition between superconducting and normal states 

4.5.1 - Free enthalpy of condensation 

As indicated in Table 4.2, the equilibrium state of a system, maintained at tem-
perature T and subject to a field H, is that which minimizes the free enthalpy  
density g (T, H). When at fixed H and T, there is competition between two phases, 
as here between normal and superconducting phases, the stable phase is the one for 
which the free enthalpy density is lower. Co-existence of two phases occurs when 
their free enthalpy densities are equal. We will now examine the free enthalpy den-
sities for the normal and superconducting phases. 

                                                        
9 D. SHOENBERG (1952) Superconductivity, Cambridge University Press. 
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Starting from the general differential relation dg   s dT  0 M(H’) dH’, which 
espresses the variation of g as a function of variations dT of the temperature and 
dH’ of the magnetic field, we have at a given temperature T and, independently of 
the phase, after integration of the field from H’  0 to H’  H 

 g(T , H )  g(T ,0) 0 M (H’)dH’0
H .  (4.23) 

So that in the normal state, with equation of state M(H)  0, 
 gn(T, H )  gn(T, 0) (4.24) 
and in the superconducting state, with equation of state M(H)   H, 

 gs(T , H )  gs(T ,0)  0
H 2

2
.  (4.25) 

Since there is coexistence of the two phases when the field H  Hc(T), 
 g s [T, Hc(T )]  gn [T, Hc(T )] (4.26) 
we have, using relations (4.24) and (4.25), 

 gs(T , H )  gn(T ,0) 0
Hc

2(T )
2

H 2

2
 (4.27) 

where the difference in the free enthalpy density between the superconducting and 
normal states includes two terms: 
»  the free enthalpy density of condensation, 

 gs
cond  0

Hc
2(T )
2

 (4.28) 

which is interpreted as the free enthalpy of the formation of COOPER pairs per 
unit volume at temperature T. The field for which the difference between the free 
enthalpies of the superconducting and normal phases are equal is called Hc, the 
“thermodynamic critical field.” 

»  the free magnetic enthalpy density, 

 gs
mag  0

H 2

2
 (4.29) 

which reflects the increase in free enthalpy density that the superconductor expe-
riences when it is inserted into the field H (Fig. 4.7). 

Figure 4.7 
Free enthalpy densities of the super-

conducting state and the normal state 
Variation of the free enthalpy densities of 

the normal phase and superconducting 
phase as a function of field H at constant 

temperature T. When H = Hc the free 
enthalpy densities are equal and there 

is coexistence of the two phases. 
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4.5.2 - Relation between the specific heat and the slope of the transition line 

At constant field H, the specific heat of a magnetic system is given in Table 4.2 as 

 CH  T
2 g
T 2

H
.  (4.30) 

This leads to the expression for the difference between the electronic specific heat 
of the two phases, 

 Cs
el Cn

el  T
2(gs gn )

T 2
H

 (4.31) 

which, using the relation (4.27), becomes 

 Cs
el Cn

el  0T
Hc(T )

T

2

 Hc

2 Hc(T )
T 2  (4.32) 

with, at the transition temperature Tc for which Hc = 0, 

 Cs
el Cn

el TTc
 0Tc

Hc(T )
T TTc

2

.  (4.33) 

This relation, between the amplitude of the discontinuity of the specific heat at Tc 
(Figs. 4.5 and 4.8) and the slope of the transition line Hc(T) at Tc , is called the 
“RUTGERS’ law.” 

At a temperature T, TUYN’s law (4.21), combined with the relation (4.32), leads to 
an expression for the difference between the specific heat of the superconducting 
and normal phases 

 Cs
el Cn

el  2 0 Hc(0) 2 T
Tc

2 3 T
Tc

2
1 .  (4.34) 

The temperature dependence in this law can be compared to that of BCS theory, 
which predicts exponential variation of the electronic specific heat at low tempera-
tures, 

 Cs
el ae

(0)
2kBT  T  Tc  (4.35) 

( (T) is the gap to be discussed in Chapter 8) and a discontinuity equal to 1.43 Tc 
at the superconducting/normal transition for zero field. The comparison between 
Cs

el deduced from (4.34) and the behavior expected from BCS is shown in Fig-
ure 4.8, where the parameters have been adjusted so that the specific heat disconti-
nuity at Tc derived from (4.34) is identical to the BCS predictions, i.e. with 

 Cs
el Cn

el TTc
 4 0 Hc(0) 2

Tc
 1.43 Tc .  (4.36) 
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Although the agreement is satisfactory overall, the principal weakness of the 
TUYN-RUTGERS’ laws is to predict at very low temperatures a variation of Cs

el that 
would be a power law, whereas experimentally (see Fig. 4.5), and according to 
BCS, it varies exponentially. 

Figure 4.8 
Comparison between the electronic

specific heat calculated 
classically and by BCS theory 

Comparison between the electronic
specific heat Cs

el of the super-
conducting phase derived from the 

relations of RUTGERS and TUYN, and the 
electronic specific heat expected when

there is a gap, as justified by BCS theory 

Their validity can also be tested by the consistency between the results of calori-
metric measurements of the jump in specific heat at the critical temperature and the 
values calculated via the relation (4.34) from the measurements of Hc(0). The com-
parison between the values obtained (Table 4.5) generally shows a very satisfactory 
agreement. 

Table 4.5 - Specific heat jump at the superconducting transition in zero field 5 

Direct measurement (by calorimetry) and indirect determination by measurement 
 of Hc(T ) (magnetometry) and application of equation (4.32) 

Material Sn In Tl Ta Pb 

Tc [K]* 3.72 3.41 2.38 4.47 7.2 

Cs
el  Cn

el [10 3 J mol 1 K 1] 
Calorimetric measurement 10.6 9.75 6.2 41.5 52.6 

Cs
el  Cn

el [10 3 J mol 1 K 1] 
Magnetic measurement 10.6 9.62 6.15 41.6 41.8 

*  http://www.superconductors.org/type1.htm 

As the differences between the specific heat do not depend on the field (see rela-
tion 4.34), they are identical in zero and finite applied fields. This implies that the 
amplitudes of specific heat jumps at the transition in a field H, which occurs at the 
temperature Tc(H ) remains as in the relation (4.34), with T replaced by Tc(H ) and 
the Tc of (4.34) kept at its value in a zero field. 
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4.5.3 - Latent heat of transformation 

Since at any point on the coexistence line the free enthalpy densities of the normal 
and superconducting phases are equal, for any displacement along the equilibrium 
line where T  Tc(H), we have (Fig. 4.9) 
 dgn  dgs eq .  (4.37) 

|eq means the equation is valid if we move along the line of equilibrium. 

Figure 4.9 
Phase diagram of the  
normal/superconductor transition 
When we move along the coexist-
ence curve, the variation of the  
free enthalpy density in one phase  
is equal to that in the other phase. 

By writing the differentials of the free enthalpy densities of each phase, 
 dgn   sn dT     and     dgs   ss dT  0 M dH (4.38) 

this leads to (sn ss )dT  0 MdHc eq  (4.39) 

where sn  ss is the difference of specific entropy between two points located on 
either side of the critical line, and since in the superconductor, M   H, 

 sn ss  0Hc
dHc
dT eq

.  (4.40) 

The latent heat of transformation L is then written as 

 L  T (sn ss )  0T Hc
dHc
dT eq

 (4.41) 

which is the CLAPEYRON equation of the phase transition. L represents the quantity 
of heat that the system receives when it passes from the superconducting state to 
the normal state. If Hc(T) varies according to TUYN’s law (4.21), 

 
dHc
dT eq

 2Hc(0) T
Tc

2
 (4.42) 

and so L(T )  2 0Hc(0) T
Tc

2
Hc(T ).  (4.43) 
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The latent heat (Fig. 4.10) is zero at T = 0 as well as at T  Tc (since Hc(Tc)  0). It 
shows a maximum at T /Tc  1/ 2.  

 
Figure 4.10 - Latent heat of transformation at the superconductor/normal transition 

In zero field, the latent heat of transformation vanishes at Tc , which shows 
that the transition is not of first order. In finite field, [Tc (H ) < Tc ] the latent 
heat is non-zero, which shows that in this case the transition is of first order. 

4.5.4 - Order of the phase transitions 

Starting from considerations about the continuity of a system’s extensive variables 
and their derivatives (the classification of EHRENFEST), the very great majority of 
phase transitions can be classified into two broad categories. 

First order transitions 

These are phase transitions which are accompanied by a discontinuity in the first 
derivatives of the free enthalpy (extensive variables) and therefore of the entropy 
and of the magnetization of the system. According to CLAPEYRON’s formula, such 
transitions have a non-zero latent heat of transformation. 

They are, furthermore, characterized by a coexistence of two phases, as there is 
during the melting of ice in water. The order parameter is discontinuous. 

Second order transitions 

At a second order phase transition the extensive variables, such as entropy, are con-
tinuous and the discontinuities are only in second derivatives of the free enthalpy 
(specific heat…). With the entropy now continuous, the latent heat vanishes. 

There is no coexistence of phases in this case. The transition is described by an 
order parameter which is zero above the critical temperature and which grows con-
tinuously from zero when the temperature descends below Tc. 

 Superconducting/Normal transitions 

As we have just shown, the latent heat of a transition under a finite magnetic field 
is non-zero; the superconducting/normal transition in a magnetic field is a first 
order transition. 
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On the other hand, in zero field, there is no entropy discontinuity at Tc. The latent 
heat is zero whereas the first derivatives of extensive variables (for example the 
specific heat) are discontinuous. The superconducting/normal transition at Tc in 
zero magnetic field is a second order transition. 

We have yet to determine the order parameter, which could be, for example, the 
density of superconducting electrons ns, zero above Tc and increasing from zero 
below Tc (see Eq. 2.33). We shall see, however, that the order parameter of the 
superconducting phase is a much more subtle quantity. 
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Appendix 4 
 
Magnetic media 

A4.1 - Fields in magnetized materials 
The equivalence magnetization - distribution of AMPÈRE currents  

As we know from reference books on magnetism: 10 
»  a current loop of intensity i and oriented surface S, behaves as a magnetic dipole 

with moment  = i S (Fig. 4.11). Placed at the origin, it creates at a point r, lying 
at a large distance, a magnetic field 

 b(r)  0

4 r5 3( r)r r2 ;  (4.44) 

»  by the principle of superposition, the magnetic field B(r) created at each point in 
space by a distribution of elementary magnetic moments is the sum of the 
fields b(r) created by each of them; 

»  to each distribution of magnetic moments which leads to a magnetization M(r) 
(the average, per unit volume, of the elementary moments around a point r), cor-
responds an equivalent distribution of bulk ja

vol and surface ja
surf currents that 

generate a magnetic field Ba(r)  B(r) at all points in space. 

Figure 4.11 
The current loop produced by an 

electron circulating in its orbit and 
the associated magnetic moment  

The current densities (“AMPÈRE currents”) and the magnetization which produce, 
at each point in space, the same magnetic field Ba are connected by the relations 

  jvol
a   M and jsurf

a   M  n  (4.45) 

where n is the unit vector locally perpendicular to the surface of the sample, and 
pointing outwards. 

                                                        
10 See Magnetism I and II (2004) D. GIGNOUX, E. DU TRÉMOLET DE LACHEISSERIE, 

M. SCHLENKER, Grenoble Sciences, EDP Sciences. 
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AMPÈRE currents in a uniformly magnetized cylinder 

We now consider an infinite cylinder with uniform magnetization M parallel to its 
axis. By applying the relations (4.45), this magnetization is equivalent to a surface 
AMPÈRE current density only of magnitude j a

surf  M flowing around the cylinder 
(see Fig. 4.13). 

This result can be very clearly interpreted by considering the orbital currents asso-
ciated with dipole moments uniformly distributed in the cylinder and oriented 
along its axis. In a normal cross-section of this cylinder the current loops are tan-
gent and, by superposition of currents flowing locally in opposite directions, the 
bulk current density is zero. Only the current loops tangential to the external sur-
face are uncompensated, which leads to the surface current density already men-
tioned. A uniformly magnetized cylinder of magnetization M along its axis is, as far 
as the magnetic field it generates is concerned, equivalent to a cylindrical surface 
carrying a surface current of density j a

surf (Fig. 4.12). 

 

Figure 4.12 
Equivalence between a uniform assembly of 
current loops and a surface AMPÈRE current 
In the bulk, the currents of the 
different loops cancel out. 

Magnetic field B 

Very generally, a “magnetic system” includes both an external electrical circuit and 
the material. The experimentalist injects into the electrical circuit, by means of a 
generator, a current distribution j0 (called the “conductor currents”) creating mag-
netic fields B0(r). The material develops a magnetization M, equivalent to a distri-
bution of AMPÈRE currents ja

vol and ja
surf , which create magnetic fields Ba(r).  

As a result, the total magnetic field B(r) at each point in space is the superposition 
of the two contributions 
  B(r)  B0(r)  Ba (r)  (4.46) 

with locally   B0  0j0 ;  Ba  0ja  (4.47) 

  B(r)  0 j0(r)  ja (r) .  

Field H 

By definition, we call the field H the difference between the magnetic field B  
divided by 0 and the magnetization M 

 
 
H  B

0
M B  0(H  M).  (4.48) 
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Although the field H can be determined directly from its definition, it is often easi-
er to calculate it by introducing the fictitious bulk m

vol and surface m
surf magnetic 

charges, modelled on polarization charges and defined by: 
 m

vol      M (4.49a) 

 m
surf   M  n . (4.49b) 

H is then the sum of two contributions, 
 H  H0  Hm (4.50) 
where H0  B0/ 0 is the field created by the conductor currents j0, and Hm can be 
derived from the distribution of magnetic charges. Hm is calculated just like 
the field E in electrostatics. Indeed it suffices to rewrite the laws of electrostatics 
(COULOMB, GAUSS, continuity equations) to determine it by replacing E by Hm, 
electric charges by magnetic charges, and to suppressing 0 in each formula. 

Like the electric field E, the curl of Hm is zero and by combining the rela-
tions (4.47), (4.48) and (4.50) and AMPÈRE’s theorem, H reduces to 

 
 H  j0 (4.51) 

which means that the curl of H comes only from the conductor currents injected by 
the experimentalist, whereas the curl of B is connected to all the currents, those of 
the conductor as well as the AMPÈRE currents which appear in response. 

B and H fields in a uniformly magnetized cylinder 

When we apply the relations (4.49), it appears that in a uniformly magnetized cyl-
inder the density of magnetic charges in the bulk is zero (  M = 0) and the mag-
netic surface charges are localized on the two circular disks defining the ends of the 
cylinder. 

They are positive on the perpendicular circular disk with outgoing normal vector 
parallel to M and negative on the opposite disk (Fig. 4.13). This makes the cylinder 
a “magnetic condenser” formed by two finite dimensional plates, carrying a charge 
density m

surf   M. The field Hm is in the opposite sense to the magnetization M 
(see relation 4.48), and for this reason it is called the “demagnetizing field.” 

The AMPÈRE currents flow on the surface of the 
cylinder and the magnetic charges are localized 
on the discs that close the cylinder at its two 
ends. The demagnetizing field Hm created by  
the magnetic charges fades away when the  
cylinder becomes very long and the magnetic 
charges are pushed to infinity. 

Figure 4.13 - The AMPÈRE currents and surface magnetic charges   
associated with a uniformly magnetized material 
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B and H fields in an infinite cylinder placed in a solenoid 

Note - In the figure below (Fig. 4.14), as in the others following, the fields H and B, 
which are not expressed in the same physical units, are nonetheless represented by 
arrows of identical length when they satisfy B = 0

 H. In other words, what we la-
bel H and M are in fact 0

 H and 0
 M. 
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Figure 4.14 - H and B fields in the interior and the exterior of an infinite cylinder (demag-
netizing factor N  0) of uniform magnetization density M placed in a uniform field B0 

B0 is the magnetic field created by the currents j0 flowing in the external solenoid.  
H0 is the contribution of the currents j0 to the field H. In fact it is the only contribu-
tion for both the exterior and the interior of the cylinder since in this geometry of an 
infinite cylinder, the demagnetizing field Hm is zero. Ba is the magnetic field created 
by the AMPÈRE currents. It is uniform within the cylinder and zero outside. M is the 
magnetization equivalent to the AMPÈRE currents. The total field H is everywhere 
equal to H0 and the total field B is the sum of the applied field B0 and the field Ba. 

In an infinite cylinder with uniform magnetization M inserted in a magnetic 
field B0: 
»  the magnetization is equivalent to surface AMPÈRE currents of density j a

surf  M 
that create a uniform magnetic field Ba  0 M within the cylinder only, and a 
vanishing magnetic field outside. The total magnetic field is therefore B  B0 
outside the cylinder and B  B0  0M inside; 

»  as the surface magnetic charges have been sent infinitely far away, the demagnet-

izing field Hm is constant and zero. The total field H is reduced to H  H0  B0

0

 

both inside and outside the magnetized material. 
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A uniformly magnetized ellipsoid 

The axially symmetric ellipsoid is a particularly interesting system for two reasons: 
»  it can be used in a broad variety of situations, since by varying the ratio of its 

axes, it becomes a flat plate, a sphere or a cylinder, as well as all of the interme-
diate forms;  

»  when the magnetization M is uniform in the bulk, so too are the magnetic field Ba 
of AMPÈRE currents and the field Hm of magnetic charges. They depend only  
on M and a factor for the ellipsoid N, called the “demagnetizing field factor”  
(Table 4.6). 

Table 4.6 
a - Examples of demagnetizing field factor N for an ellipsoid  

with the magnetic field applied along the axis of revolution c 

c/a 0 (plate) 1 (sphere) 2 4  (infinite cylinder) 

N(B//c) 1  ~ 0.25 ~ 0.1 0 

b - Demagnetizing factor N of a cylinder with magnetic field applied perpendicular to its axis 

c/a  (infinite cylinder) 
N(B c) ½ 

In addition, when the response is linear, applying a constant magnetic field B0 cre-
ates a magnetization M, a magnetic field B and a field H, all three of which are 
uniform inside the ellipsoid. The three quantities are related to one another by the 
expressions of Table 4.7. 

Table 4.7 - Summary of the magnitudes of the different fields H and B  
within and on the surface of an ellipsoid placed in a uniform field B0  

with demagnetizing field factor N, uniform magnetization M 

Uniform applied magnetic field B0  0 H0 
M uniform in the sample 

At any point, inside or outside the ellipsoid 
B  B0  Ba    ;    H  H0  Hm 

Inside the ellipsoid Ba
int and Hm

int are uniform. 
Ba

int  (1  N) 0 M    ;    Hm
int   NM 

Outside the ellipsoid Ba
ext and Hm

ext are not uniform. 
 At each point Ba

ext  0 Hm
ext 

Tangentially to the surface of the ellipsoid, at the equator 
~B  B0  N 0 M    ;    H ~     H0  NM    ;    ~B  0 H

 ~
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The Figures 4.15, 4.16 and 4.17 represent successively: 
»  the distribution of the densities of AMPÈRE currents jasurf and surface magnetic 

charges m
surf . As the magnetization is uniform, the bulk current densities and 

bulk magnetic charges are zero. jasurf has a maximum at the equator where it takes 
the value M and decreases towards the poles where it vanishes. Conversely, m

surf 
equals  M at the poles, and zero at the equator. For the special case of a sphere 
we have: 

 jasurf   M sin      ;    m
surf   M cos  (spherical case) 

where  is the angle between the direction of magnetization and the point consid-
ered (Fig. 4.15);  

»  the magnetization and the (uniform) fields within the solenoid (Fig. 4.16); 
»  the profiles of fields B and H in a cross-section passing by the equatorial plane of 

the ellipsoid (Fig. 4.17). 

–    –     –      –

 
Figure 4.15 - AMPÈRE currents and magnetic charges  
at the surface of a uniformly magnetized ellipsoid 

(a) There are only surface AMPÈRE currents. Their intensity is zero at the poles 
and maximal at the equator where they take the value jasurf  M. The magn-
etic field is uniform in the ellipsoid with value Ba

int  (1  N) 0 M. (b) There  
are only surface magnetic charges. Their density is maximal at the poles  
with value m   M ; it vanishes at the equator. The demagnetizing field  
inside the ellipsoid is uniform and equals Hm

int    NM. We recall the note 
preceding Figure 4.14 concerning representations of the vectors of H and M. 
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Figure 4.16 - Fields within an ellipsoid of magnetic form factor N,  

and uniform magnetization M, placed in a uniform field B0   0 H0 
The total magnetic field B is the sum of B0 created by the conductor currents and 
of Ba created by the AMPÈRE currents. The total field H is the sum of B0/ 0 and Hm 
created by the magnetic charges. H  and B  are fields at the equator. See the 
note preceding Figure 4.14 concerning representations of the vectors H and M. 

 
Figure 4.17 - Profiles across the equator of fields H and B in the interior and exterior  

of an ellipsoid of uniform magnetization M placed in a uniform field B0   0 H0 
The total B is the sum of B0 and Ba created by the AMPÈRE currents.  
The total H is the sum of H0 and Hm created by the magnetic charges. 

The general case 

In the general case of a sample of arbitrary shape, there is a complex distribution of 
the AMPÈRE currents, the magnetic charges, of the fields B and H and of the mag-
netization M. The magnetic moment carried by the whole sample is written 

 

   

M  M(r)
sample

d3r   B(r)
0

H(r)

sample

d3r .  (4.52) 
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A4.2 - Work performed in the magnetization of matter 

 The work to establish a field in an empty solenoid 

We consider a solenoid of length L, formed by a winding of n1L turns of cross-
sectional area S, connected to a generator (n1 is the number of turns per unit 
length). In order to generate the magnetic field, the experimentalist gradually in-
creases the current intensity i

 0 in the winding. 

Suppose i
 0(t) is the value of the current intensity at the instant t, the magnetic 

field B0(t) created inside the solenoid is of magnitude 

 B0(t)  0H 0(t)  0 n1 i0(t)  (4.53a) 

and its flux through the n1L turns of the solenoid is 
 (t)  n1LB0(t)S .  (4.53b) 

In order to increase the magnetic field by an amount dB0 during a time interval dt, 
the experimentalist must, through the generator, overcome the opposing induced 
electromotive force v (t)   d /dt. The work W received by the system is equal 
and opposite to the work performed by this force, or 

 W  v (t) i0(t)dt  i0(t)d .  (4.54) 

By replacing i
 0 and  by their expressions (4.53) as a function of B0, we find  

 W  B0

0 n1
(n1LS dB0 )  V B0

0
dB0  V (H 0dB0 )  (4.55) 

where V  is the volume inside the solenoid. 

Work to establish a field in a solenoid containing a solid cylinder of material 

When there is material completely filling the solenoid volume, the magnet fields B0 
and Ba are superimposed and the opposing electromotive force resisting the in-
crease of flux through the turns can be written 

 v (t)  d
dt

 d
dt

n1LB(t)S  d
dt

n1L B0(t)  Ba (t) S .  (4.56) 

The work that the experimentalist must provide becomes  

 W   i0  H 0

n1
(n1dBLS)  V H 0dB  V HdB.  (4.57) 

To establish the intensity i
 0 in the solenoid necessary for creation of the field B0, 

the experimentalist must counter simultaneously the variation of fluxes of both the 
magnetic field B0 produced by the variation of current i

 0, and the magnetic field Ba 
produced by the AMPÈRE currents. The AMPÈRE currents and the current i

 0
 appear 

in the expression for the work in inequivalent ways, since the AMPÈRE currents are 
created in response and unlike i

 0, the experimentalist does not control them directly. 
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The expression for the exchange of work between the experimentalist and the sys-
tem can be generalized to any geometry of the conducting circuit and magnetic 
material as 
 

 
W  H(r) dB(r) 

all space
d3r  (4.58) 

with  B(r)  B0(r)  Ba (r)  (4.59) 

and  H(r)  H0(r)  Hm (r).  (4.60) 

In this expression for the work performed, the presence of dB(r) reminds us that 
the variation of flux is due to both contributions of the magnetic field, while the 
field H depends, via its curl, only on the current density j0 of the conductors, on 
which the experimentalist acts directly (relation 4.51). 

Work performed on the magnetized material alone 

Up to now, we have considered the work stored by the whole system (solenoid + 
magnetized material), but sometimes it is preferable to consider the material alone. 

In this case, the work provided to the system “material alone” is equal to the work 
on the system “solenoid + material”, reduced by the work on the solenoid without 
the material, or 

 W  H(r) dB(r) H0(r) dB0(r)
all space

d3r  (4.61) 

which can also be written as 11 

 
 

W  0 H0(r) dM(r) d3r
material

 (4.62) 

where M(r) is the magnetization of the material and H0(r) the field produced by 
the currents of the conductor alone. This relation is obvious when H  H0, but in 
fact is completely general. 

                                                        
11 L.D. LANDAU & E.M. LIFSHITZ (1969) Electrodynamics of Continuous Media,  

Pergamon Press, Oxford. 



Chapter 5 
 

THE INTERMEDIATE STATE 
OF TYPE I SUPERCONDUCTORS 

The aim of this chapter is to examine the way in which Superconductor to Normal 
(S/N) phase transitions occur in type I superconducting samples of finite size and 
varying shapes. In addition to the temperature, the transitions can be just as well pro-
voked by magnetic fields or by currents flowing in the samples. 

5.1 - Criteria for the occurrence of a S/N transition 

We first consider the simple case of an infinite cylinder placed in a current-carrying 
solenoid. The three quantities we shall consider are the magnetic field B, the 
field H and the current density j in the sample. 

Outside the cylinder, the magnetic field is that which is created by the solenoid, 
denoted B0. Within the sample, it decreases exponentially from the surface accord-
ing to 

 B(u)  B0 e
u

 (5.1) 

where u is the distance to the surface and  is the magnetic field penetration depth 
or simply the penetration depth (see section 3.3). 

Because of the absence of any demagnetizing field for the infinite cylinder, the 
field H is uniform in all the space, inside or outside the sample, 

 H  B0

0
 H 0.  (5.2) 

The superconducting current density decreases from the surface of the sample, 
where it takes its largest value, according to the expression 1 

 j(u)  B0

0
e

u
.  (5.3) 

                                                        
1 In a rigorous treatment of the PIPPARD model, the decrease of the field is not strictly 

exponential and the maximum in the superconducting current is not exactly localized at 
the surface, but is slightly displaced. Use of the local equation with a renormalization of 

 gives us these simple laws again.  
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Furthermore, when the field H reaches the critical field Hc , the magnetic field and 
the current density at the surface, where they are strongest, take values 

 B(u  0) B  Bc  0Hc and j(u  0) 
Bc

0


Hc  jc  (5.4) 

where Bc is the critical magnetic field and jc the critical current density. Seeing 
these correlations, it would appear to be equivalent to say that the material enters 
into a transition from the superconducting state to the normal state if: 
› the field Hint inside the sample reaches Hc ; 
› the magnetic field B  at the surface of the sample attains Bc ; 
› the current density reaches jc somewhere in the sample (in fact, at the surface). 

These considerations lead, in 1916, to the formulation of the SILSBEE criterion: 2 
A superconductor loses its vanishing resistance when at any point of its surface the 
total magnetic field B  attains the critical value Bc . 

Later the generalized SILSBEE criterion 3 was formulated: 
If the current density j somewhere attains the critical current density jc, the part of 
the sample where it does so transforms into the normal state. 

In actual fact the two formulations are only equivalent if the dimensions of the 
sample are large compared to the penetration depth . When they are inequivalent 
for geometrical reasons, we should retain the generalized version, and thus the cri-
terion of critical current density. This criterion was shown to be valid by the micro-
scopic theory of COOPER pairs (see section 8.6.6). Beyond a critical velocity (relat-
ed to the critical current density jc) the kinetic energy of the electrons in a COOPER 
pair exceeds the sum of the condensation energy and the kinetic energy of the un-
paired electrons, and this leads to pair-breaking. 

5.2 - S/N transition of an infinite cylinder 

Following the argument of the generalized SILSBEE criterion, we shall see first how 
the transition should proceed towards the normal state in a cylindrical superconduc-
tor subject to an increasing magnetic field B0. 
»  B0  Bc

 : the cylinder is entirely superconducting. The LONDON region extends 
from the external surface. The highest current density jhigh is located at the sam-
ple surface and is lower than jc :  jhigh  B0 /( 0)  jc (Fig. 5.1a). 

»  B0  Bc  0 Hc   0 jc : the current density reaches jc at the surface and, accord-
ing to the generalized SILSBEE criterion, the “surface” makes a transition to the 
normal state. A normal skin (Fig. 5.1b) appears with a corresponding reduction of 

                                                        
2 F.B. SILSBEE (1916) J. Wash. Acad. Sci. 6, 597. 
3 A.C. ROSE-INNES & E.H. RHODERICK (1977) Introduction to Superconductivity,  

Pergamon Press, Oxford, Chapter 7. 
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the radius of the part of the cylinder that remains superconducting. The LONDON 
region is then shifted further inside the sample. 

»  As the superconducting current density flowing at the surface of the new 
LONDON region is still equal to Bc /( 0), the radius of the superconducting re-
gion diminishes still further (Fig. 5.1c) and, little by little, the superconductivity 
disappears. 

Analyzed in this way, we see a sort of “melting” of the superconductivity starting 
from the outside surface of the sample. 

 
Figure 5.1 - Superconducting-normal transition  

of an infinite cylinder inserted in a uniform magnetic field 
(a) As long as B0  Bc

 , the cylinder is entirely superconducting. Screening of the magnetic field 
is due to current flowing in the LONDON region. (b) When B0 reaches Bc

 , the transition begins at 
the surface, with the formation of a normal sheath which reduces the radius of the supercon-
ducting phase and moves the LONDON region towards the center of the sample. (c) The radius of 
the superconducting region decreases spontaneously until it completely disappears. 

5.3 - Transition in small samples 

5.3.1 - Thin slab 

We saw in Chapter 2 (section 2.4.4) that small samples behave in a special way, in 
particular those that are slabs whose thickness d is of the order of, or smaller than, 
the penetration depth. In that case the magnetic field B decreases from the surface 
but does not reach zero at the heart of the sample. 

Following the relation (2.28b), the highest current density is 

 jhigh 
B0

0
 tanh d

2
. (5.5) 

According to the generalized SILSBEE criterion, the transition only begins locally 
when this current density reaches jc, and therefore the highest magnetic field B0 
(and field H0  B0/ 0) that this film can bear while staying in the superconducting 
state is determined by the condition, 
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 B0

0
 tanh d

2
 jc 

Bc

0
 (5.6) 

where: 

»  if d  , tanh d
2

1 . The case of large samples is recovered, so that the transi-

tion begins when H0  Hint  Hc or B0  B  reaches the critical magnetic field Bc ; 

»  if d is of the same order as, or less than , 
 
tanh d

2
  . The transition starts when 

 B0  B 
Bc

tanh d
2

 Bc and H 0  Hint 
Hc

tanh d
2

 Hc ;  (5.7) 

»  in the extreme case when d   

 jhigh
B0

0

d
2

.   (5.8) 

The superconducting slab of thickness d can bear any field up to the critical  
value Hc(d ) defined by 

 Hc(d)  2
d

Hc Hc.   (5.9) 

Hc without any precision is taken implicitely to mean Hc(d  ). 

5.3.2 - Thin wire 

In a wire of radius R   subject to a magnetic field B0, the current density jhigh 
derived from the relation (2.38) can be written using the expansion of the modified 
BESSEL functions, 

 jhigh
B0

0

R
2

  (5.10) 

leading to Hc(R) 2
R

Hc.   (5.11) 

These expressions indicate that in general a thin wire can endure a field H which is 
higher than the critical field Hc of the bulk material without undergoing a transition. 

Remark - There is a slight qualification that we should make to such arguments,  
to include the effects of a finite coherence length. The expression found in 
GINZBURG-LANDAU theory for the critical field of a thin slab is 

 Hc(d) 2 6
d

Hc.  d    (5.12) 

But beware, while this closely resembles the expression (5.9), the mechanism in-
voked is quite different and is based on the very long coherence length of type I 
superconductors (a concept to be made precise in Chap. 6). 
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5.4 - Effects of sample shape 

5.4.1 - Reminder of relevant results in magnetism 

Up to now, we have avoided effects due to the shape of samples by restricting our-
selves to plates or infinitely long cylinders with applied fields in the longest direc-
tion. In magnetism these geometries possess the advantage of having no demagnet-
izing fields and of producing a magnetic field Ba due to AMPÈRE currents (or their 
equivalents, LONDON currents) that is uniform inside the material and vanishes 
outside. 

If the sample is not infinite, things are no longer so simple because of the appear-
ance of a demagnetizing field and the return of the lines of magnetic field Ba out-
side the sample (see Fig. 2.10b). For the particular case of an ellipsoidal sample, 
however, when it is placed in a uniform field B0 along one of its axes, the magnetic 
field B, the field H and the magnetization M remain uniform inside the material, 
but not outside. For a given magnetizing field factor N, these three quantities are 
related by the relations given in Appendix 4, section A4.1 and summarized in  
Table 5.1. 

Table 5.1 - H and B fields inside an ellipsoid of demagnetizing field factor N  
and magnetization M,  inserted in a magnetic field B0

 

H and B are uniform inside the ellipsoid, but not outside. Their values on 
the outside surface are found from the continuity conditions of H and B. 

 Magnetic field B Field H 

In the bulk Bint  B0  (1 N) 0M  Hint  H0 N M  

On the surface, at the equator  B  B0 N 0M   H  H0 N M  

5.4.2 - Application to superconductors 

 LONDON currents squeezed on the surface 

In the following discussion, all dimensions of the ellipsoid will be supposed to be 
large compared to the penetration length of the magnetic field. As a first step, the 
superconducting currents of the LONDON region may be considered as being 
squeezed onto the surface. 
For the magnetic field B to be zero inside the superconducting ellipsoid we must 
have, according to Table 5.1, 

 Bint  B0  0(1 N)M  0  (5.13) 

implying a magnetization 

 
 
M  B0

0(1 N)
.   (5.14) 
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It then follows that the field H, related to the magnetization by H   M inside the 
ellipsoid (Figs 5.2 and 5.3) equals 

 
 
Hint 

B0

0(1 N)
.  (5.15) 

By continuity of H at the equator, where there are no magnetic charges, we find on 
the equatorial circle, where detailed calculation show that the magnetic field is the 
greatest, 

 H  Hint and B  B0

1 N
 (5.16) 

with B  greater than B0, since N is always between 0 and 1. 

 
Figure 5.2 - Magnetization M, field H and magnetic field B  

in a superconducting ellipsoid inserted in a uniform magnetic field B0 
The total B is the sum of B0 and the Ba created by the LONDON currents. The total H is the 
sum of H0 and the Hm created by the magnetic charges. In this schematic figure, the LONDON 
region is supposed to be very small and is not shown. See the note preceding Figure 4.3 
concerning representations of the vectors H and M. 

Decompressing the LONDON currents 

“Decompressing” the LONDON currents does not change the equatorial field B  
tangential to the sample surface. It simply replaces the discontinuity of the magnet-
ic field by an exponential decay as we move into the sample interior 

 Bint (u) B e
u

,  (5.17) 

a dependence associated with the superconducting current density (see section 2.6), 

 j(u)  B
0

 e
u

 (5.18) 

with maximum value 

 jhigh 
B
0

 B0

0 (1 N)
.  (5.19) 
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Figure 5.3 - Magnetization M, field H and magnetic field B  

inside and outside a superconducting ellipsoid inserted in an infinite solenoid 
(a) B0 is the magnetic field created by the currents j0 flowing in the external solenoid. Ba is the 
magnetic field created by the LONDON currents flowing around the ellipsoid and which are great-
est at the level of the equator. (b) H0 is the contribution of the currents j0 to the field H. Hm is 
the demagnetizing field created by the magnetic charges, whose density is highest near the 
poles. M is the magnetization. The total field H is the sum of H0 and Hm. The total magnetic field 
B is the sum of the applied field B0 and the field Ba. It vanishes inside the ellipsoid (see Fig. 5.2). 

5.5 - Intermediate state for a sphere 

5.5.1 - First approach 

Suppose we place a superconducting sphere in the magnetic field B0 (Fig. 5.4a). As 
its demagnetizing field factor N is , the surface magnetic field at the equator, 
where it is highest, takes the value (see the expression 5.16) 

 B  3
2

B0  (5.20) 

and the highest current density, which is situated at the surface of the equator, is 
given by 

 jhigh 
3
2

B0

0
.  (5.21) 

By virtue of the generalized SILSBEE criterion, the transition begins locally when 
jhigh  jc , i.e. when 

 B0  2
3 0Hc 

2
3

Bc.  (5.22) 

It is therefore the part of the sphere near the equator that first makes a transition to 
the normal state, when the magnetic field B0 reaches  Bc (Fig. 5.4a). 
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Now a curious phenomenon appears, since with the transition at the equatorial 
zone, the superconducting region is no longer spherical in shape. It turns into an 
ellipse with a ratio (c/a) greater than 1 (Fig. 5.4b) and with a new demagnetizing 
field factor N’ < N (see App. 4, Table 4.6a). By applying the relation (5.16), the 
tangential magnetic field at the new equator becomes 

 B’  B0

1 N’
 B  (5.23) 

which reduces the superconducting current density at the surface to 

 j’high 
1

1 N’
B0

0
 jc  (5.24) 

and makes the field B0  Bc insufficient for the new equatorial zone to make the 
transition. We have therefore to increase B0 to (1  N’)Bc before the transition con-
tinues within the new equatorial surface (Fig. 5.4c) which makes the superconduct-
ing material even more elliptic… which will require an even higher value of the 
field B0 for the transition to continue. 

Little by little, with the increase of B0, the volume of material staying supercon-
ducting is reduced and it becomes more and more elongated. At the end of this pro-
cess, all that is left is an almost cylindrical superconducting needle with a demag-
netizing field factor N  0. The transition is complete when B0 reaches Bc 
(Fig. 5.4d). 

 
 B0  Bc Bc  B0  Bc B0  Bc 
 Hint  Hc Hint  Hc Hint  Hc 

Figure 5.4 - The transitional process of a sphere from superconducting  
to normal states under the influence of an applied magnetic field B0 

(a) As long as B0   Bc  Hint  Hc , the sphere stays completely superconducting. 
(b) When B0 reaches  Bc , the current density at the equator attains the critical current 
density jc ; The S/N transition begins, making the superconducting material lose its spherical 
form. (c) Because of the reduced demagnetizing field factor N, the transition can only con-
tinue if B0 is increased further. (d) The transition is complete when B0 reaches Bc  0 Hc . 

To summarize, from the time the transition begins at B0   Bc until it finishes  
at B0  Bc, the magnetic field B  at the circumference of the equator of the  
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superconducting part stays at the value Bc and the field Hint inside the supercon-
ducting volume 4 stays constant and uniform at Hc. 

The transition therefore occurs at constant Hc and is reminiscent of the solid-liquid 
phase transition with changing pressure. Like the pressure, the field Hint is an inten-
sive parameter that stays constant in the regime of co-existence of the two phases. 

5.5.2 - More realistic structures 

We have seen that when superconducting and normal phases are at equilibrium in  
a sufficiently large sample, the system can arrange itself so that at each point 
Hint  Hc . 

Even so, in order to define the structure and topology of the mixture of phases, we 
need to consider, in addition to this condition of thermodynamic equilibrium, other 
relevant energies. These include in particular the interfacial energies between the 
normal and superconducting phases and the magnetic energy resulting from defor-
mation of the field lines inside and outside the sample. As in a ferromagnet, where 
the domains arrange themselves so as to reduce these two energies, the sample will 
“split up” into superconducting and normal regions maintaining Hint  Hc. The 
morphology of the phases 5 is then determined by the following parameters: 

»  topological aspects: the field penetrating into the sample must leave it some-
where (  B  0), which implies that there are channels of normal phase; 

»  surface energy: as we are discussing a type I superconductor, the interface energy 
between a normal and a superconducting region is positive. This tends to reduce 
the number of interfaces (i.e. the domains are large) and make them as flat as 
possible; 

»  magnetic field energy: as the average density of magnetic energy is B2  / 2 0, the 
magnetic field must stay as homogeneous as possible since any spatial distortion 
of B increases the average of B2. 

Thus for a given relative volume of normal and superconducting regions, it proves 
less costly in magnetic energy to distribute the normal fraction in parallel bands 
allowing a moderate magnetic field to pass (Fig. 5.5b), rather than keeping the su-
perconducting part as a compact block that the magnetic field would have to turn 
around, making it stronger at the equator (Fig. 5.5a). 

                                                        
4 These conclusions are only valid if the dimensions of the sample are greater than the 

penetration depth  of the magnetic field. 
5 C.G. KUPPER (1968) An Introduction to the Theory of Superconductivity,  

Clarendon Press, Oxford, 83. 
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Figure 5.5 - Sphere in the intermediate state 

To pass around a compact superconducting phase, the field lines must be strongly com-
pressed, leading to high magnetic energy densities. The emergence of multiple normal 
canals reduces the distortions of the magnetic field and its regions of high intensity, 
which contributes to the lowering of the magnetic energy. The resulting increase in  
interface energy tends to limit splitting up the sphere into too many different regions. 

For the same reason, seeking to gain magnetic energy, it is favorable to reduce the 
demagnetizing field and therefore the density of magnetic charges  m

surf  n  M. To 
do this, the system takes form so as to minimize the surface of the superconducting 
phase that comes out near the poles by bifurcation of the phases and curving the 
final N/S interfaces. An example of a model structure that includes the different 
energy terms is shown in Figure 5.6. 

 

Figure 5.6 
Reduction of the demagnetizing field 
A model with alternately normal and 
superconducting layers constitutes a 
first approximation to the intermediate 
phase. A more detailed analysis of the 
various terms in the energy predicts 
branching near the surfaces.6 

We can summarize in the following way the “magnetic” state of an ellipsoid of 
demagnetizing field factor N: 

»  B0  (1 N) Bc : the sample is completely superconducting 

                                                        
6 L. LANDAU L.P. PITAEVSKII, E.M. LIFSHITZ (1969) Electrodynamics of Continuous 

Media 2nd Edition, Pergamon Press, Oxford. 
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 Hint 
B0

0(1 N)
; M  Hint ; M  B0

0(1 N)
; B  0;  (5.25) 

»   (1  N)Bc  B0  Bc : the sample is in the intermediate state. Its bulk is a coarse 
mixture of normal phase of proportion , and of superconducting phase of pro-
portion 1  . The field H is everywhere equal to Hc , in the superconducting as 
well as in the normal regions. The magnetic field B is zero in the superconductor 
and equals 0 Hc in the normal channels. The average magnetization M  is related 
to the field H and the average B  of the magnetic field B over the whole sample by 

 M  B
0

Hint  (5.26a) 

with Hint  H 0 N M .  

Thus Hint  Hc ; 1 
H 0 Hc

NHc
; B  0 Hc ; M  ( 1)Hc ;  (5.26b) 

»  B0  Bc : the sample is normal everywhere 

 Hint  H 0 ; B  B0 ; M  0.  (5.27) 

The variations of the mean magnetic field B , the field H and the mean magnetiza-
tion M , for a sphere of demagnetizing field factor N  , are shown in the three 
graphs of Figure 5.7. 

G H G H

 
Figure 5.7 - Magnetic properties of a superconducting sphere  

inserted in a uniform external field B0  (N   )  
(a) Mean magnetic field over the whole sample B . (b) Internal field to the sample Hint, (c) 

Mean magnetization  M  in the superconducting (S), intermediate (I) and normal (N) states 

5.6 - Intermediate state of a thin plate 

5.6.1 - Laminar model 

We now turn to the case of a rectangular plate, with a large area and thickness d, 
placed in a uniform magnetic field B0 perpendicular to its plane. 
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Intuitively we can imagine that as soon as B0  0, normal regions will be formed in 
order to allow the magnetic flux to cross the sample without forcing the field lines 
to pass around the plate. Within the framework we have just discussed, it is an el-
lipsoid of demagnetizing field factor N close to 1 and with an “equatorial” magnet-
ic field B B0/(1  N) much greater than B0. The plate transforms into the inter-
mediate state for very small values of B0. 

According to the previous section, in the intermediate state, the sample must satisfy 
the thermodynamic condition Hint  Hc and have a structure that is as fine and regu-
lar as possible, in order to minimize the inhomogeneities of B, but coarse enough to 
limit the S/N interfaces. 

A simple model we can consider (Fig. 5.8) is the formation of stripes of normal 
phase (of width Dn), inside which is a magnetic field B  0 Hc , and stripes of su-
perconducting phase (of width Ds), in which the magnetic field is zero. The stripes 
alternate in the x direction with period D  Dn  Ds . 

The flux of the magnetic field B0 over a period D is concentrated in the normal 
stripe of width Dn , so flux conservation requires that 

 DB0  Dn 0 Hc.  (5.28) 

Figure 5.8 
Stripe model of the intermediate  
state for a plate of thickness d 
The model alternates in the x direction 
normal stripes of width Dn and super-
conducting stripes of width Ds . 

5.6.2 - Energy balance 

It is generally agreed in magnetism that the field lines squeezed in strips of 
width Dn, separated by intervals of width Ds need a distance of the order of Dp to 
redistribute homogeneously with, (Fig. 5.9a) 

 1
Dp

 1
Dn

 1
Ds

.  (5.29) 

To simplify the discussion, we assume that the perturbed region reduces to a layer 
of thickness Dp on each side of the plate, within which the field B alternates  
between the values 0 over the width Ds and the value 0 Hc over the width Dn 
(Fig. 5.9b). 

We shall now evaluate the surface and magnetic energies that enter into the model. 
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Figure 5.9 - Model magnetic profile of a thin plate in its intermediate state 

(a) The flux of the applied magnetic field B0 ”crosses” the plate via the normal 
stripes in which, as a consequence, the field lines must be squeezed and the mag-
netic field is enhanced. (b) Rectangular model for the constriction of the field lines. 

Energy of interface formation 

For each period D in the x direction, there are two interfaces N/S of length L 
(Fig. 5.8) in the y direction. Since each unit length in the x direction can accommo-
date 1/D of a period, the interface energy per unit length in this direction is 

                   
 

interface 
2Ld

D
  (per unit length in the x direction) (5.30) 

where  is the interfacial energy per unit of surface. As we will see in Chapter 6, 
this energy is positive for type I superconductors. 

Energy due to perturbation of the magnetic field outside the plate  

In the absence of constriction, the magnetic field in the stripes of the neighboring 
layer of thickness Dp is uniform. Its energy, per unit of length in the x direction is 

 mag 1 
(B0 )2

2 0

D (2Dp)
D

L.  (5.31) 

With constriction, the magnetic field is concentrated in the stripes of width Dn 
where it is Bc ; the energy per unit of length (in the x direction) becomes 

 mag 2 
(Bc )2

2 0

Dn  (2Dp)
D

L  (5.32) 

giving an energy difference of 

 mag  mag 2 mag 1  2L
(Bc )2

2 0

Dn  Dp

D
1 D

Dn

B0

Bc

2

.  (5.33) 
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Energy due to perturbation of the magnetic field in the plate 

In the plate, the field H is constant and equals Hc (Hint  Hc). Flux conservation 
requires a fraction  of normal phase, so that 

 B0  0Hc  (5.34) 

independent of the model. 

The magnetic energy stored in the plate ½  0 Hc
2 is therefore constant, independ-

ent of the model and, a fortiori, of the periodicity. This energy does not then enter 
into the calculation of D. 

5.6.3 - Structure of the intermediate state of the plate 

The difference (up to a multiplicative constant) total between the reference state 
without constriction and the state with constriction (the intermediate state) is then 
 total  interface  mag.  (5.35) 

Making use of (5.34) and the fact that 
 Dn  D  (5.36) 

that leads to DnDp 
2(1 )D2  (5.37) 

giving total  2L d
D

 D 2(1 )2 0Hc
2

2
.  (5.38) 

Minimizing total by putting its derivative with respect to D is zero, gives 

 D  1
(1 )

d
( 0 Hc

2 ) / 2
.  (5.39) 

The interface energy between normal and superconducting phases in a material of 
type I is (see Chap. 6) 

 
Bc

2

2 0
 (5.40) 

where  is the coherence length, which can be identified with the width of the 
“wall” between the two phases. As a result, the periodicity can be written 

 D  1
(1 )

d .   (5.41) 

For a lead plate (    550 nm) of 2 mm thickness, inserted into an external field 
B0  Bc /2 (   ½) the period D is found to be of order 0.1 mm and values Dn  Ds 
of order 0.05 mm. 

Naturally this whole discussion makes sense only if the width of the N/S interface, 
(the coherence length ), is much smaller than the plate thickness. 
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While simplified, this treatment of the lamellar model brings out the essential ele-
ments that characterize the intermediate state of a plate in a perpendicular field: the 
alternating normal and superconducting lamellae, the regularity of the structure and 
the millimetric scale of the period. The real structures obtained are often more 
complex but we can recognize the features mentioned above, at least providing one 
of the phases is not extremely dominated by the other (Fig. 5.10). 
Some unsolved questions remain, however, concerning the self-organization of 
these domains that results from the competition between interactions of short range 
(associated with a surface tension) and of long range (magnetic, electrostatic or 
elastic). Problems such as the initial growth of bubble, the transition bubble-
lamellae, the role of defects, the nucleation and annihilation of superconducting 
domains… continue to be studied both for the statics and for the dynamics of  
domain formation. 

 
Figure 5.10 - Intermediate states of a slab of indium under increasing field at T  1.9 K 

The superconducting zones (lightly colored) and normal (darkly colored) are tangled in the form of 
“curved” lamellae whose width is regular on a scale of micrometers. We see clearly the normal 
regions invade the sample with increasing external magnetic field. The white traces have been left 
by regions carrying flux that were trapped at zero field, and that move when the external field 
increases. Images kindly provided by C. GOURDON (Institute for Nanophysics, Pierre and Marie CURIE 
University, Paris) and V. JEUDY (Laboratory of the Physics of Solids, Paris-Sud University, Orsay). 

5.7 - Avoiding confusion 

We must insist on the fact that the stripes, which may become tubes, of the normal 
phase that enter the superconducting phase have nothing to do with the vortices that 
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will be introduced in Chapter 6. Here we are dealing with a state, said to be “inter-
mediate” and which is characterized by a phase separation on the scale of millime-
ters. It is caused by the geometric form of the samples and the demagnetizing field 
that they carry. This precipitation occurs despite the positive N/S interface energy 
of type I superconductors. By contrast, the appearance of vortices that are, roughly 
speaking, “normal threads” crossing the superconductor, is due to the negative sign 
of the interface energy characteristic of type II superconductors. They appear inde-
pendently of any demagnetizing field and their scales are very much smaller than 
the structures seen in the intermediate state we have here. 

We must therefore distinguish clearly the intermediate state of type I superconduc-
tors, which is a phase separation, from the thermodynamic SHUBNIKOV mixed 
phase of type II superconductors where the vortices infiltrate the sample.7 

5.8 - Wire carrying a current (model of the intermediate state) 

5.8.1 - Formulation of the problem 

We will now reconsider the wire of radius R in which the experimentalist drives a 
current of intensity I. As we saw in section 2.6.2, the current density is not distrib-
uted uniformly in a cross-section of the superconducting wire, but is concentrated 
near the surface on the scale of a penetration depth . To be more precise, the cur-
rent density jz decreases following the relation (2.45a), 

 jz (u) jhigh  e
u

 (5.42) 

where u is the distance separating a point in the material from the closest surface. 
The highest value of the current density, situated immediately below the surface is 

 jhigh 
I

2 R
.  (5.43) 

By applying the generalized SILSBEE criterion, the wire remains completely super-
conducting as long as the current density is everywhere less than the critical cur-
rent jc . 

Like the infinite cylinder subject to a magnetic field, a skin of normal metal ap-
pears when the current density at the surface jhigh reaches jc , and the radius of the 
superconducting part is reduced. The current density is still given by (5.42), but 
with a new radius R’  R, which leads to a value j’high  jhigh and therefore a rapid 
“melting” of the superconducting phase into a normal sheath that rapidly invades 
the whole sample. 

                                                        
7 In many texts, at least those written in English, the SHUBNIKOV phase is called the 

“mixed state.” 
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If we follow this logic, the wire should pass abruptly and totally into the normal 
state when the current intensity I reaches a critical intensity Ic such that 

 
 
jhigh  jc 

Ic
2 R

or Ic  2 RHc  (5.44a) 

with a jump in the electrical resistance which should pass from zero to 

  
 
R n  n

L
R2  (5.44b) 

where n and R n are, respectively, the resistivity of the material and the resistance 
of the wire of radius R and length L in the normal state. 

In fact, if we have written “should” in the previous paragraph, it was because the 
experimental results are rather different. The wire’s resistivity  is indeed zero 
when the intensity is less than the critical value Ic, and there is a discontinuity in 
the resistance R when Ic  2  R  jc , but the discontinuity has an amplitude of only 
R n

 / 2. As Figure 5.11 shows, the resistance R n of the normal state is reached only 
asymptotically for current intensities much greater than Ic . 

Figure 5.11 
Resistance of a type I superconducting wire 

as a function of current intensity carried 
At the critical current Ic , the resistance R 

jumps to half the value R  n it has when it is 
completely normal. Beyond this value, it 
increases towards an asymptote of R  n . 

To understand this result, we must remember that, in the normal state, the current 
density is distributed uniformly in the wire. Therefore when I reaches Ic and the 
wire becomes normal, the current density is redistributed uniformly with a densi-
ty j  Ic / R2, much less than the critical current density... and so this allows the 
wire to return to the superconducting state. But in the superconducting state, the 
current density localizes again into the LONDON region, and once again its value 
jhigh exceeds jc. This sequence of “melting” of the superconducting state starting 
from the exterior surface begins again: the wire goes normal, the current density  
becomes uniform again, which brings the wire back to its superconducting state… 

Thus when the current driven reaches the critical value Ic , neither the normal state 
nor the superconducting state is stable. Some intermediate state must appear that 
can stabilize the system. 
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5.8.2 - Model for the intermediate state 

Many models have been proposed to explain the experimental results. The sim-
plest, represented in Figure 5.12, separates the wire into two different concentric 
regions: 
»  the first (variables with index 1) is a completely normal sheath with cylindrical 

core of radius core a and an external surface of radius R; 
»  the second (variables with index 2) occupies the cylindrical core of radius a. In 

this region, within which H = Hc, the material passes into an intermediate state 
composed of a “coarse” mixture of normal and superconducting phases. 

 
Figure 5.12 - Model of the intermediate state in a current-carrying wire 

(a) The wire divides into a normal sheath and a core of radius a in an intermediate state, within 
which the field takes the value H = Hc . (b) The current density is uniform in the normal sheath 
and varies as 1/r in the central region, with continuity at the interface between the two regions. 

The total intensity of the current I can then be divided into the two components I1 
and I2 transported by each of the two regions. 

»  In the completely normal exterior sheath of conductivity n = 1/ n, the current 
density j1 is related to the electric field resulting from the applied voltage between 
the extremities of the wire as 

 j1 = nE  (5.45) 
and the current intensity carried is 

 I1 = j1 (R2 a2 ).  (5.46) 

»  Within the internal cylinder, which is in an intermediate state, the field H is eve-
rywhere equal to Hc. The current density j, because it is injected by the experi-
mentalist, is a conductor current and therefore related to the field H by × H = j. 
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It is not an induced current as are the AMPÈRE currents. In this geometry this 
gives 

 j2(r) 
H
r


Hc
r

,  (5.47) 

and 

 I2  j2(r)
S

2 rdr  Hc
ro

a
2 rdr  2 aHc .  (5.48) 

Adding in the continuity condition of the current density j1(a)  j2(a), which  
requires 8 

 n
 E  Hc

 / a,  (5.49) 
expressions (5.46) and (5.48) lead to 

 I  I1  I2  Hc
R2 a2

a
 2a  RHc

R
a
 a

R
,  (5.50) 

that relates the intensity of the current I to the radius a of the central core. Con-
sistent with relation (5.44), the transition to the normal state begins when 
I  2  RHc  Ic

 , corresponding to a  R, and is only complete when a goes to zero, 
i.e. for infinite current. 

Using expressions (5.44) and (5.49), the total intensity (5.50) can be expressed as a 
function of the electric field E and of the critical current,  

 I  Ic
2

E
Ic


Ic
E

 1
2

( E)2  Ic
2

E
 where  2 R2

n.  (5.51) 

When the experimentalist injects a current of intensity I by means of an applied 
voltage, the electric field E in the normal sheath and, by continuity, in the central 
core obeys the quadratic equation  

 2E2 2I E  Ic
2  0  (5.52) 

whose positive solution is E  I 1 1
Ic
I

2

.  (5.53) 

This leads to a wire resistance R  E L / I, which can be expressed in terms of its 
normal state resistance R n  n

 L /  R2

 
as 

 

I  Ic       R (I )  0

I  Ic       R (I )  R n
2

1 1
Ic
I

2  (5.54) 

                                                        
8 A discontinuity in the current density would give rise to a DIRAC delta function singu-

larity in the magnetic field at the interface. 
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producing a discontinuity in resistance of R n
 / 2 when the intensity I passes Ic and 

an asymptotic value of R n beyond. Experimentally, the jump in resistance is to a 
value between 0.7 and 0.8 R n. 

Remark - The “diamond” shape in superconducting grains in the central cylinder is 
rather arbitrary. More complex shapes have been considered. For example, there is 
a dynamic model where the interfaces between normal and superconducting phases 
are mobile, which would increase the resistance jump at the critical value Ic of the 
injected current.9 

5.8.3 - A thin wire 

In a wire whose diameter is equal to or less than the penetration depth of the field, 
the current density – which decreases below the surface – does not have enough 
space to go to zero at the center. In the limit R  , it even tends to become uni-
form, the critical intensity then being 

 Ic  R2 jc.  R    (5.55) 

Since when R  , the critical intensity is reached for Ic  2  R  jc , we see that we 
can, without provoking a transition towards the normal state, pass a higher net in-
tensity of current in N wires of diameter d in parallel than in a single wire of total 
equivalent cross-section, i.e. one of diameter D  N d . 

Remark - Once again this result is only valid for type I superconductors. It is true 
that superconducting wires designed to transport electric currents are made up of 
micrometer-diameter filaments, but they are type II superconductors (see Chap. 6) 
and the reason for their multi-filament structure is very different from what we dis-
cuss here. 

5.9 - Critical current of a wire in a magnetic field 

5.9.1 - General case 

When a superconducting wire carrying a current I trans injected by a generator is, in 
addition, subject to a magnetic field B0, the total current density jtot in the wire is 
the vector sum of the density jtrans of the current transported and the screening cur-
rent density jscreen from the LONDON currents associated with B0, 

 jtot  jtrans  jscreen.  (5.56) 

According to the principle of superposition, each current density is distributed as it 
was without the other: jtrans as it was without B0 and jscreen without the transported 
current. According to the generalized SILSBEE criterion, the transition begins when 

                                                        
9 A.F ANDREEV (1968) Proc. 11th Intl. Conf. On Low Temp. Phys.,  

Univ. of St. Andrews, 831. 
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the modulus of the total current density somewhere reaches the critical current den-
sity of the material.  

5.9.2 - Magnetic field applied parallel to the axis of the wire 

The LONDON currents are normal to the radial vectors (Fig. 5.13a), and are thus 
perpendicular to the current carried. The total current density is then 

 j tot  ( j trans )2  ( jscreen )2 .  (5.57) 

Since each of the densities taking its highest value at the surface, 

 jhigh
trans 

Ic(B0 )
2 R

and jhigh
screen  B0

0
 (5.58) 

the critical intensity Ic(B0) now depends on B0. Since the transition towards the 
normal state begins when jtot reaches jc, we have 

 jc2 
Ic(B0 )
2 R

2

 B0

0

2

 (5.59) 

which means that, in an axial field B0, the maximum current intensity that can pass 
in a type I superconducting wire of radius R is  

 Ic(B0 )  Ic
2(B0  0) 2 R

0

2

(B0 )2 .  (5.60) 

The dependence of this critical intensity as a function of B0 is shown in Fig-
ure 5.13b. This intensity vanishes for B0  Bc, beyond which field the wire no long-
er transports current without energy dissipation. 

 
Figure 5.13 - Critical current of a wire in a magnetic field parallel to its axis 
(a) Distribution of the transported currents j trans and the screening cur-
rents j screen in a superconducting wire carrying a current I trans and subject to 
an applied field B0 parallel to the wire. The two distributions of current are 
orthogonal. (b) Variation of the critical current intensity as a function of B0. 
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5.9.3 - Magnetic field applied perpendicular to the axis of the wire 

As the wire can be considered as a very elongated ellipsoid, any direction perpen-
dicular to the cylinder axis constitutes a principal axis with associated demagnetiz-
ing factor N  ½. The screening currents flow around the direction of the wire’s 
axis with density 

 jscreen  jhigh
screen sin with jhigh

screen  B0

0(1 N)
 2 B0

0
 (5.61) 

where  is the angle between B0 and the radial vector passing through the point 
considered (Fig. 5.14). The screening current therefore flows in opposite directions 
on the different sides of the wire and the highest screening current densities occur 
at two positions on the surface directly opposite each other.  

Figure 5.14 
Screening currents in a wire placed 
in a magnetic field perpendicular to 
its axis (cross-section perpendicular 
the axis of a cylindrical wire) 
The screening currents flow in the 
direction of the wire’s axis, which is a 
special case of an ellipsoid of demag-
netizing factor N = ½. The surface 
current density varies as sin . 

The density of transported current is distributed, as always, within the penetration 
depth, in a single direction and it is highest at the surface of the sample where it 
equals 

 jhigh
trans  I trans

2 R
.  (5.62) 

As a consequence, the highest total current density is on the surface of the wire, at 
the position where the densities of transported and screening currents are simulta-
neously greatest, and where they flow in the same sense. 

In this geometry, the relation between the critical current density and the external 
field is then 

 2B0

0


Ic(B0 )
2 R

 jc.  (5.63) 

Thus in a transverse field B0 the maximum current intensity that a type I supercon-
ducting wire of radius R can transport without loss is 
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 Ic(B0 )  Ic(B0  0) 4 RB0

0
.  (5.64) 

This critical intensity decreases linearly as the field increases until it vanishes when 
B0 reaches Bc

 /2 (Fig. 5.15b). 

 
Figure 5.15 - Distribution of transported current and screening current in a superconducting 

wire carrying a current I and subject to a field B0 that is perpendicular to the wire’s axis 
(a) The screening currents j screen flow within the penetration depth from the sur-
face and in the opposite senses on the two sides of the plane of symmetry: those 
that are to the front flow up, and those that are to the rear flow down. The trans-
ported I trans is localized within the penetration depth from the surface and always 
flows from down to up. The current densities to the front add, while those to the 
rear partially cancel. (b) Variation of the critical current intensity as a function of B0. 



Chapter 6 
 

TYPE II SUPERCONDUCTORS 

The distinction between type I and type II superconductors is a key element in  
superconductivity. It results from the relative values of two characteristic lengths: 
»  the penetration depth , the distance over which the magnetic field decreases 

from the surface towards zero or, more generally, the distance over which the 
magnetic field can vary; 

»  the coherence length , the distance necessary for restoring “complete” supercon-
ductivity starting from an interface with a region that is in the normal state. 

The ratio   / , called the “GINZBURG-LANDAU parameter,” determines the na-
ture of a given superconducting material. Whether the value of  is below or above 
a critical value c close to 1, the superconductor is of type I or II. In this chapter, a 
simple thermodynamic approach is preferred to the phenomenological GINZBURG-
LANDAU model. That model introduces in a natural and very powerful way these 
two length scales, but is still difficult because it is formulated from a non-trivial 
starting point and has equations that are non-linear. In this chapter, we introduce 
the different key elements step by step, including the vortices that fulfil a vital role 
in type II superconductivity. 

6.1 - Two types of magnetic behavior 

6.1.1 - The emergence of type II superconductors  

The existence of two types of superconductors came to light slowly. The first signs of 
type II superconductivity date from the 1930’s when anomalies were detected in the 
magnetic behavior of superconducting alloys. The group at Oxford lead by 
MENDELSSOHN demonstrated an incomplete MEISSNER effect characterized by an 
average magnetization  M  less than 1. Meanwhile DE HAAS and VOOGD in Leiden 
measured critical fields that were abnormally high, for example 2 teslas in the alloy 
Sn-Bi instead of the the few tenths of a tesla found in pure metals. At first these ef-
fects were attributed to impurities that might be perturbing the standard supercon-
ducting behavior. For recognition of a second type of superconductivity we must 
await ABRIKOSOV in 1957. Starting from the GINZBURG-LANDAU equations that had 
been published in 1950, he showed that two different forms of superconducting  
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behavior were possible. In 1959 it was GORKOV who proved the equivalence  
between the GINZBURG-LANDAU equations and the microscopic BCS theory. 

6.1.2 - Magnetic behavior of type II superconductors 

G H

 
Figure 6.1 - Type II superconductors 

(a) Phase diagram of a type II superconductor  
(b) Dependence of the average magnetization on field H in a type II superconductor 

Type I superconductors 

We have already described in Chapter 4 the magnetic behavior of type I supercon-
ductors (see Fig. 4.1): in the phase diagram represented in the (H,T) plane, the 
normal and superconducting states are separated by a single line Hc(T). In the su-
perconducting phase the material behaves as a perfect diamagnet within which 
M   H (   1). 

Type II superconductors 

In contrast to type I superconductors, the phase diagram of type II superconductors 
is characterized by two transition lines Hc1(T) and Hc2(T) terminating at the same 
transition temperature Tc in zero field. These lines divide the superconducting state 
into two regions, corresponding to two distinct phases called the “MEISSNER 
phase” and the “SHUBNIKOV phase” (called also “mixed state”). 

In the MEISSNER phase (H  Hc1) the magnetization M equals  H, as in a type I 
superconductor. The material behaves as a perfect diamagnet: the susceptibility 
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   1 and there is total exclusion of the magnetic field from the bulk (B = 0)  
except within a penetration depth of the surface. 

In the SHUBNIKOV phase (Hc1  H  Hc2), the superconductor remains diamagnetic 
(   0) but is no longer perfectly so |  |  1. The average magnetization of the sam-
ple  M  decreases with H, the MEISSNER effect is incomplete and the magnetic 
field averaged over the whole sample differs from zero (  B   0). 

Surface superconductivity: It turns out that if the bulk of the material returns to the 
normal state at the field Hc2, the same is not true of its surface, which continues to 
exhibit signs of superconductivity up to a field value Hc3  Hc2. This aspect will not 
be discussed in this book. 

6.1.3 - Classification of superconducting materials 

All known type I superconductors 1 are pure metals, and pure metals that supercon-
duct are almost all of type I, with the few exceptions including niobium and tanta-
lum, that are of type II. Their critical fields at 0 K, Bc  0 Hc, are all less than a 
tenth of a tesla (see Table 4.4). 

The other superconducting materials (alloys, organic compounds, cuprates, heavy 
fermions, iron-based superconductors…) are of type II. While the values of lower 
critical fields Bc1  0 Hc1 are on the whole lower than the critical fields Hc of 
type I superconductor (Table 6.1), the upper critical field Bc2  0 Hc2 can be very 
high: 13 T for NbTi, 23T for Nb3Sn.  

Table 6.1 - Critical fields of type II superconductors  
representative of the principal families of materials 2 

We note the low values of Hc1 and the high values of Hc2 . Tc is the critical temperature under 0 field. 

Materials Tc [K] 0 Hc1 (0) [T] 0 Hc2 (0) [T] 

Nb (wire) 9.3 0.18 2 
NbTi 9.5  13 
Nb3Sn 18.2 0.44 23 
NbN 16 0.0093 15 
LaMo6S8 11  44.5 
UBe13 0.9  6 
K3C60 19 0.013 32 
Rb3C60 29.6 0.012 57 

                                                        
1 From measurements on ScGa3 and LuGa3, SVANIDZE and MOROSAN claim nonetheless 

that a very rare class of compounds can show type I behavior (E. SVANIDZE & 
E. MOROSAN (2012) Phys. Rev. B 85, 174514). 

2 Numerical values collected by C. POOLE, H. FARACH & R. CRESWICK  
in Superconductivity (1995) Academic Press, New York, Chap. 9. 
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A certain number of very anisotropic materials, including the organic compounds, 
the cuprates and iron-based superconductors, show different critical fields depend-
ing on the direction of the applied field. Among the selection of values given in 
Table 6.2, we can see the particularly high values of the field Hc2 in the cuprates 
and iron-based superconductors. 

Table 6.2 - Critical fields of some anisotropic materials 2 
These materials show a 2D character and are almost isotropic in the (ab) plane. 
The figures given here are typical values of individual samples. There is a very 
large spread of values, notably because of the doping. 

Materials Tc [K] 0Hc1
ab(0)  [T] 0Hc2

ab(0)  [T] 0Hc1
c (0)  [T] 0Hc2

c (0)  [T] 

-(ET)2I3 1.5 0.007 1.74 0.036 0.02 

MgB2
 3 39 0.11 14-19 0.11 3-4 

YBaCuO 92 0.005 140 0.5 29 

HgBa2Cu3O8+x 131   0.045 190 
Ba(Fe0.9Co0.1)As2

 4
 22.5  70  50 

6.2 - Surface magnetic free enthalpy 

As shown in section 4.5.1, the difference in free enthalpy density between super-
conducting and normal phases of a material can be expressed as (relation 4.27) 

 gs gn  0
Hc

2

2
H 2

2
.  (6.1) 

It is the sum of a negative “condensation” term gs
cond   0 Hc

2/2 and a positive 
magnetic term gs

mag 0 H 2/2. The material passes from the superconducting state 
to the normal when gs

mag, which is zero in the superconductor for H = 0, increases 
sufficiently to compensate gs

cond, thus making the density of total free enthalpy in 
the superconductor equal to that of the normal metal (Fig. 6.2). 

6.2.1 - Surface magnetic free enthalpy density 

Now the expression for the magnetic free enthalpy density gs
mag relies on the equa-

tion of state M   H (relation 4.17) valid only when B  0, that is beyond the pene-
tration depth . It turns out then, that to realize a more realistic description, we must 
re-evaluate gs

mag in the vicinity of an interface with a normal metal or the vacuum. 

                                                        
3 T. MURANAKA et al. (2005) Superconductivity in MgB2, 

in Frontiers in Superconducting Materials, A.V. NARLIKAR Ed., Springer, 937. 
4 A. YAMAMOTO et al. (2009) Applied physics Letters 94, 062511. 
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Since the magnetic field no longer vanishes everywhere in the superconductor but 
decreases from its surfaces as 

 B(u)  B0  e
u

 (6.2) 
where u is the distance from the interface, and the magnetization develops from the 
same surfaces as 

 M (u, H )  B(u)
0

H  H e
u

1 .  (6.3) 

 
Figure 6.2 - Bulk free enthalpy density in the superconducting phase 

Compared to the normal state, the bulk free enthalpy density is:  
– lowered by the free enthalpy density of condensation g s

cond   μ0 Hc
2/ 2  

– raised by the magnetic free enthalpy density g s
mag  μ0 H

 2/ 2 

With this new local equation of state, the magnetic free enthalpy density at distance 
u from the interface becomes (see relation 4.23) 

 gs
mag(u)  0 M (u, H’)dH’0

H  (6. 4) 

or, after replacing M(u, H’) by its form (6.3) and integrating, 

 gs
mag(u)  0

H 2

2
1 e

u .  (6.5) 

Therefore the contribution to the magnetic free enthalpy density, so far considered 
as equal everywhere to gs

mag  0 H 2/2, is diminished from this value near each 
interface (Fig. 6.3) by an amount 

 gs
mag(u)  0

H 2

2
e

u
  (6.6) 

that is greatest at the surface and decreases exponentially over the penetration 
depth  as we move into the bulk. 
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We define then a “surface magnetic free enthalpy density” (per unit area of the 
sample surface), as the difference between the actual magnetic free enthalpy densi-
ty and the free enthalpy density we would have found for a uniform density of 
magnetization M   H 

 Gs
mag,surface  0

H 2

2
e

u

0
du  0

H 2

2
.  (6.7)  

The surface magnetic free enthalpy is negative. 

 
Figure 6.3 - Magnetic free enthalpy density close to the surface 

Because of the reduction in the magnetization in the LONDON region, the magnetic free 
enthalpy density is reduced close to the surface (compare with Fig. 6.2). Gs

mag,surface 
represents the lowering of free enthalpy per unit area of (flat) surface of the sample. 

6.2.2 - A first step toward vortices 

Let us see what happens if we consider only this free surface enthalpy density. As 
the equilibrium state of a superconductor subject to a field H minimizes the total 
free enthalpy, the system will try to form the maximum possible number of 
LONDON regions that bring negative contributions to the total free enthalpy. Obvi-
ously it cannot do so by changing shape, but it can achieve this by generating a 
number of filaments of normal phase inside, around each of which there are 
LONDON regions (Fig. 6.4a). 

The multiplication of such filaments where M = 0 and of their LONDON regions in 
which  H < M < 0, leads to a deficit of magnetization (incomplete MEISSNER ef-
fect) such as is seen in the SHUBNIKOV phase (see Fig. 6.1b). The profile of free 
enthalpy density represented in Figure 6.4 shows that creation of a cylindrical nor-
mal filament of radius a, surrounded by a LONDON region of extent , modifies the 
total free enthalpy in two ways: 
»  inside the normal filament, the free enthalpy per unity of filament length increas-

es by an amount represented in Figure 6.4b by the area marked , i.e. 



6 - TYPE II SUPERCONDUCTORS 117 

 0 a2 Hc
2 H 2

2
;  (6.8a) 

»   in the LONDON region that surrounds it (r > a) the free enthalpy is, by applying 
relation (6.6), lowered by an amount represented by the area marked , namely 

 0
H 2

2
e

r
2 r

a
dr  2 0

H 2

2
(a  )e

a
.  (6.8b) 

 
Figure 6.4 - Normal filament within a superconductor 

(a) Profile of the magnetic field in and around a normal cylindrical filament 
created in a superconductor. (b) Profile of the free enthalpy density in, and 
around, the normal filament.  represents the increase of free enthalpy in the 
normal filament and  the decrease in free enthalpy in the LONDON region. 

The difference in total free enthalpy between the superconductor with or without 
the normal filament accompanied by its LONDON region is therefore, per unit 
length, 

 G  0 a2 Hc
2 H 2

2
2 H 2

2
(a  )e

a
.  (6.8c) 

Finally, this normal filament surrounded by its London region is thermodynamical-
ly stable if G  0, i.e. from Equation (6.8c), if the field H exceeds the value H # 
given by 

 H #  a2

a2  2 (a  )e
a Hc.  (6.9) 

Therefore, the surface magnetic free enthalpy favors an incomplete MEISSNER ef-
fect in agreement with experiment. However, this term has to be balanced, since, 
whatever the values of a and , the field H # determined by the relation (6.9) is 
found to be less than the critical field Hc . This means that if we restrict ourselves to 
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this surface contribution alone, there would always be a field H #, less than Hc, be-
yond which filaments of normal phase would become stable within the supercon-
ducting phase. Such a result would imply that all materials would show a 
SHUBNIKOV phase and be of type II, which is contrary to experiment. 

The original question must therefore be inverted. We no longer need to know the 
origin of type II superconductors, instead we ask why do type I superconductors exist? 

6.3 - Surface free enthalpy of condensation 

6.3.1 - Coherence length 

When we write that the density of free enthalpy of condensation (relation 6.1) is 
equal to  0 Hc

2/2 everywhere in the superconductor, we are actually assuming 
that there can be an infinitesimally thin transitional region that separates the normal 
regions, where no electrons are superconducting, from the superconducting regions, 
where the density of superconducting electrons becomes uniform. In other words, 
this assumes that the density of superconducting electrons can jump in a single 
step, from zero to its bulk value ns  5 as soon as the interface is crossed. 

In fact this is not true: the density of superconducting charges can only pass from 0 
to ns  over a finite distance of order the coherence length  which is interpreted as 
the average distance between two electrons in the same COOPER pair. 

In a simple model, we suppose that the density ns of superconducting electrons in-
creases within the superconductor starting from the interface with the normal phase 
or vacuum according to the formula 

 ns(u)  ns 1 e
u .  (6.10) 

This means that when there is an external magnetic field, as we move into the sam-
ple there is simultaneously a decrease of the magnetic field B over the penetration 
depth  and an increase of the density ns(u) of superconducting electrons over the 
characteristic scale  (Fig. 6.5). 

6.3.2 - Geometric interpretation of the coherence length 

The PIPPARD coherence length was introduced in Chapter 3 as the distance over 
which the potential vector A should be averaged in order to determine the current 
density j at a point. It was interpreted as the average distance ( 0 in clean super-
conductors or p in dirty superconductors) that separates two electrons of a COOPER 
pair at 0 K. 

                                                        
5 If we do not specify further, ns is the density of superconducting electrons in the bulk. It 

will be denoted ns  in special contexts where the density varies in space. The notations 
ns(u) and ns(r) are reserved for local densities. 
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Figure 6.5 - Magnetic field and density of superconducting electrons  

near a Normal/Superconducting interface 
Close to an interface the magnetic field B decreases exponentially 
over the characteristic length . Simultaneously the density of super-
conducting electrons increases with another characteristic length . 

This picture also allows us to provide a qualitative justification for the density pro-
file of the centers of gravity of COOPER pairs. We can consider it to be the quantity 
ns(u)/2 introduced in the previous section (each COOPER pair is made up of two 
superconducting electrons). Figure 6.6 shows different situations and the qualita-
tive result that we obtain as we move away from the interface. 

 
Figure 6.6 - Illustration of possible configurations of COOPER pairs  

as a function of the distance of their centers of gravity with respect to the surface 
(a) For the center of gravity of a pair to be in the immediate neighborhood of the surface, the 
constituent electrons must themselves be in close proximity to the surface. This condition 
leaves few favorable geometric configurations and the density of centers of gravity of the pairs 
is extremely reduced near the surface. (b) At a point further from the surface, the number of 
configurations increases as now the COOPER pairs whose electrons are close can be oriented in 
any direction in space. This is not yet the case for COOPER pairs whose electrons are further apart. 
(c) At a distance  from the interface and beyond, the geometric restrictions on the orientation 
of COOPER pairs vanish. The density of centers of gravity of the pairs reaches its bulk value ns∞ /2. 
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We should be careful, however, since the coherence length  only coincides with 
the size of COOPER pairs at 0 K, as we shall see later. What remains true is the cen-
tral rôle played by the non-local character of superconductivity that we have  
already seen with the PIPPARD equations in Chapter 3, section 3.2, that discussed 
the finite extent of COOPER pairs. 

6.3.3 - Surface free enthalpy density of condensation 

If the density of superconducting electrons is reduced close to the surface, so too 
must be the density of the free enthalpy of condensation, interpreted as the free 
enthalpy of formation of COOPER pairs, to which it should be proportional. 

From its value  0 Hc
2/2 in the bulk, where the density of superconducting elec-

trons is ns , it follows that at a distance u from the interface where the density of 
superconducting electrons is ns(u) it should equal 

 gs
cond (u)  0

Hc
2

2
ns(u)
ns

 0
Hc

2

2
1 e

u   (6.11) 

which in comparison to the situation where the density of carriers would be uni-
formly ns , constitutes a change in the free enthalpy density of condensation of 

 gs
cond (u)   0

Hc
2

2
 e

u

.  (6.12) 

As for the magnetic term (section 6.2), we define the surface free enthalpy density 
of condensation (per unit area of the sample surface), as the difference between the 
actual free enthalpy density of condensation and what would be found for the free 
enthalpy density with uniform condensation 

 Gs
cond,surface  0

Hc
2

2
e

u

0
du  0

Hc
2

2
. (6.13) 

The surface free enthalpy of condensation is positive. 

6.4 - Total surface free enthalpy 

The sum of magnetic terms (6.7) and condensation terms (6.13) constitute the total 
free enthalpy per unit surface area of creation of a planar Normal/Superconducting  
interface, 

 Gs
surface  0

H 2

2
Hc

2

2
.  (6.14) 

Its sign depends on the applied field and on the GINZBURG-LANDAU parameter 

 .  
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Gs

surface  0 if H 
Hc

Gs
surface  0 if H 

Hc
 (for a planar surface). (6.15) 

Profiles for the densities of surface free enthalpies are represented on Figure 6.7 for 
H/Hc  0.8;   80 nm and several values . 

 
. . . . . . . . . .   condensation term gs

cond(u)          –  –  –  magnetic term δgs
mag(u)  

——  total gs(u)  gs
cond (u)  gs

mag (u) 

Figure 6.7 - Density of surface free enthalpy H/Hc   0.8 ;   80 nm ; 10    100 nm 
Representation of the differences between the densities of free enthalpy close to a surface 
and in the bulk. The integrated area between gs(u) and the horizontal axis (with signs as 
indicated by  or ) represents surface free enthalpy. For a field H / Hc  0.8 and a penetra-
tion depth  = 80 nm, it is positive when  > 40 nm and negative for smaller values. 

6.5 - Vortices and type II superconductors 

6.5.1 - Description of a vortex 

Once we have introduced a coherence length , the model of a geometrically well-
defined normal filament in the superconductor, surrounded by a LONDON region of 
decreasing magnetic field, has been made obsolete. 
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The normal filament must be replaced by a vortex which is described as a physical 
“object” of cylindrical symmetry (Fig. 6.8) within which, starting from a central 
axis, the density of superconducting electrons increases from zero to ns  over a 
characteristic distance  and from which the magnetic field decreases from a max-
imum Bcenter towards zero over the characteristic distance . According to the laws 
of electromagnetism and the second LONDON equation, emergence of the magnetic 
field B requires vortex currents of the LONDON type. These are most commonly 
considered as screening currents, but here we visualize them more as currents gen-
erating an islet of magnetic field within the superconductor. 

The name “vortex” is an archaic form of the Latin word “vertex” that means 
“whirlpool.” 

Figure 6.8 - A vortex 
Starting from a central axis, the magnetic field B 
taking a maximum value of Bcenter accompanied 
with whirling superconducting currents,  
decreases over the characteristic distance   
while the density of superconducting electrons 
increases from zero to its bulk value ns  over the 
coherence length . The magnetic field varies 
little around the vortex center because of the low 
density of LONDON currents in the core region. 

Rigorous determination of the conditions for stability of a vortex requires a precise 
knowledge of the real profiles of the magnetic field B(r) and the density of super-
conducting electrons ns(r). This problem can be treated starting from the 
GINZBURG-LANDAU equations and leads to a magnetic field which has the form 
drawn in Figure 6.8. At this stage we make the simple approximation that ns(r) and 
B(r) vary exponentially from the central axis 6, each with its characteristic length 
(  and  respectively) as they would from a planar surface, i.e. 

 ns(r)  ns 1 e
r  ; B(r)  Bcenter e

r
.  (6.16) 

We should not forget that the penetration depth is not independent of  as the 
depletion of superconducting carriers reduces the density of LONDON currents that 
must then spread out more to maintain the magnetic field. In fact this has already 
been taken into account in going from the LONDON length L to the penetration 
length in the relation 3.6). 

                                                        
6 A more realistic profile has been proposed within the framework of the GINZBURG-

LANDAU model. 
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6.5.2 - Stability of vortices 

Stability condition 

Without vortices the free enthalpy density of the superconductor is uniform and 
given by the relation (6.1). 

With one vortex centered at r  0, it becomes (by relations 6.6 and 6.12), 

 gs(H ,r)  gn 0
Hc

2

2
1 e

r  H 2

2
1 e

r   (6.17) 

which leads to the free enthalpy per unit length for the creation of a vortex, defined 
as the difference between the free enthalpy of a sample with and without a vortex, 

 G vortex   0
Hc

2

2
2 re

r

0
dr 0

H 2

2
2 re

r

0
dr  (6.18) 

   cost in “condensation”   gain in “magnetic” 
   free enthalpy   free enthalpy 

that after integrating is per unit length 

 G vortex  2 0
2Hc

2 2H 2 .  (6.19) 

The free enthalpy of formation of a vortex is positive in zero field, decreases as the 
field increases and turns negative when H is larger than (  / )Hc . This result makes 
appear the two categories of superconducting materials depending on the relative 
values of  and : 
»  superconductors of type I,   : the critical field Hc is reached before Gvortex 

becomes negative and therefore before a vortex is stable; the superconducting 
state disappears uniformly at Hc before any vortex can appear; 

»  superconductors of type II,   : Gvortex becomes negative for a field Hc1 less 
than the critical field Hc; the vortices become stable starting from the field 

 Hc1  Hc 
Hc .  (6.20) 

Here the critical value c of the GINZBURG-LANDAU parameter that separates type I 
and II superconductors is equal to one. A more thorough analysis starting from the 

GINZBURG-LANDAU equations changes it to 
 

c 
1
2

 

   c the superconductor is of type I 
with  (6.21) 
   c the superconductor is of type II 

The characteristic lengths ,  and the values of  listed in Table 6.3 are in agree-
ment with the fact that the majority of pure metallic superconductors are of type I, 
while alloys and compounds are of type II. We also see that while the penetration 
depths  are relatively close to one another (the different materials differ by  
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relative factors no larger than 7), the coherence lengths are very widely distributed 
(factors greater than 200), which means that the nature, type I or type II, of the su-
perconductor depends above all on the coherence length . The ratio between ex-
treme values of  is more than 5000. 

Table 6.3 - Experimental values of the GINZBURG-LANDAU parameter    /  
Note that its value is much less than 1 for pure metals, the majority of which are of 
type I, and much greater than 1 for alloys and compounds that are all of type II. This 
broad spectrum of  is essentially due to the range of values for the coherence length . 

Material Tc [K]  [nm]  [nm]   /  

Al 1.175 550 40 0.03 

In 3.41 360 40 0.11 

Ta 4.47 93 35 0.38 

Pb 7.20 82 39 0.48 

Nb 9.25 39 50 1.28 

Pb-In 7 30 150 5 

Nb-Ti 9.50 4 300 75 

Nb3Sn (A15) 18,1 3 65 22 

PbMo6S8 (CHEVREL) 15 2 200 100 

Rb3C60 29.60 2 247 124 

Very anisotropic materials present penetration and coherence lengths that are aniso-
tropic, just like their critical fields (Table 6.4). 

Table 6.4 - Penetration and coherence lengths at 0 K for some anisotropic materials  
These materials have a 2D character and are quasi-isotropic in the (ab) plane. 

Material Tc [K] ab [nm] c [nm] ab [nm] c [nm] 

MgB2
 7 39 1000 1000 11.8 2.8 

YBaCuO 91  130  450  1.3  0.2 

HgBaCuO 133  130  3500  1.3  

Temperature dependence 

Like the thermodynamic critical field Hc , the fields Hc1 and Hc2 decrease when the 
temperature is raised, going from their maximum values Hc1(0) and Hc2(0) at zero 
temperature, to zero when the temperature reaches Tc (see Fig. 6.1a). Note that the 
penetration  and coherence lengths  vary with temperature in much the same way 

                                                        
7 A.V. SOLOGUBENKO (2002) Phys. Rev. B 65, 180505; 

J.D. FLETCHER (2005) Phys. Rev. Lett. 95, 097005. 
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which means that their ratio  depends weakly on temperature and makes the nature 
of the superconductor, of type I or II, an intrinsic property (Table 6.5). 

Table 6.5 - Behavior of the penetration depth  and the coherence length  near Tc  
as a function of the characteristic parameters 8 

(0) is the penetration depth at 0 K in the pure materials, 0 the BCS 
coherence length at 0 K,  the mean free path in the normal metal 

 Pure superconductor  Dirty superconductor  

Coherence length  (T) 
  
0.74 0 1 T

Tc

½

 
  
0.85 0 1 T

Tc

½

 

Penetration depth  (T) 
  

1
2

(0) 1 T
Tc

½

 
  

1
2

(0) 0 1 T
Tc

½

 

 
(T )  (T )

(T )
 0.96 (0)

0
 0.715 (0)  

Impurity effects 

The presence of impurities in metals reduces the mean free path of electrons, which 
has the effect of decreasing the mean distance between electrons in the COOPER 
pairs. This has two consequences (Table 6.5): 

»  a reduction in the coherence length by a factor / 0 ,  

»  an increase in the penetration depth  by a factor 0 / .  

These two effects act in the same sense of an increase in the GINZBURG-LANDAU 
parameter    / . For this reason, once the concentration of impurities is suffi-
cient a material originally of type I (   c) becomes of type II (   c). 

6.5.3 - Quantization of the flux carried by a vortex 

While the thermodynamic approach is satisfactory in that it provides the stability 
conditions for the vortex, it completely misses the quantization of the flux of the 
magnetic field it carries, a fundamental property of the vortex. Indeed it will be 
seen in Chapter 9 that the quantum coherent state of the superconducting conden-
sate 9 constrains the total magnetic field flux associated with a vortex to be equal to 
a fixed quantity 0 called the “quantum of flux” or “fluxon” 

 0 
h
2e

 2.07  10 15 Wb.  (6.22) 

                                                        
8 See for example, M. TINKHAM (1996) Introduction to Superconductivity,  

2nd ed., Dover, New York, section 4.2, 118. 
9 This property will be discussed in detail in section 9.3.1. 
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As the profile of the magnetic field and its spatial extent are determined by the 
penetration depth , the only adjustable parameter allowing this condition to be 
satisfied is the value of the magnetic field at the center of the vortex Bcenter, which 
acts as a normalization factor. Within the approximation of an exponential decrease 
of the magnetic field (Eq. 6.16), 

 0  B(r)2 r0 dr  Bcenter  e
r

2 r
0

dr  2 2Bcenter  (6.23) 

or Bcenter 
0

2 2 .  (6.24) 

So we see that, whatever the magnetic field created by the external solenoid, the 
magnetic field at the center of the vortex is not equal to B0 but maintains the val-
ue Bcenter given by relation (6.24), determined by the penetration depth . As we 
shall see further on, this discussion makes sense only if the vortex is isolated. 

This value of Bcenter forces us to question the magnetization profile introduced in 
the relation (6.2) where we have implicitly assumed that Bcenter = 0

 H 0. Nonethe-
less, it turns out that while this constraint on the magnetic field modifies the mag-
netization profile and the change in free enthalpy during formation of a vortex, the 
competition between the surface magnetic and condensation enthalpies certainly 
remains the driving force behind the formation of vortices. 

6.5.4 - Results of “GLAG” theory 

Starting from a form of free energy that had been proposed by GINZBURG and 
LANDAU, and by including the thermodynamic parameters, the electromagnetic 
parameters and the coherence constraints, ABRIKOSOV and GORKOV made a more 
precise calculation of the critical fields Hc, Hc1, Hc2, the energy 1 of formation of a 
vortex and the magnetic field at the center. The relations between the critical fields 
and the penetration and coherence lengths in this GINZBURG- LANDAU-
ABRIKOSOV-GORKOV model (or GLAG, to recall the names of the four Russian 
physicists) 10 take, for   1 and at temperature T, the forms given below 

 Hc(T )  0
2 2 0 (T ) (T )

 (6.25) 

 Hc1(T )
Hc

2
ln  0

4 0
2(T )

ln  (6.26) 

 1 



4 0
2 ln Bcenter

0

2 2 ln  2 0Hc1  (6.27) 

                                                        
10 D. SAINT JAMES & G. SARMA (1969) Type II superconductivity,  

Pergamon Press, Oxford-New York. 
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 Hc2(T )  0

2 0
2(T )

 2 Hc  (6.28) 

 
Hc2
Hc1

 2 2

ln
Hc1 Hc2  Hc

2 ln .  (6.29) 

Since the value of ln  is between 1 and 5, the expression for Hc1 predicts values 
not very far from (6.20). The expression (6.28) for the critical field Hc2 will be jus-
tified in section 6.7 and the relation (6.25) in Chapter 8 (relation 8.96). 

6.6 - Vortex lattice 

6.6.1 - ABRIKOSOV lattice 

Suppose we take a superconducting bar sufficiently long to avoid any effects of 
demagnetizing fields, and place it in a uniform magnetic field B0 that creates a uni-
form field H equal to H0  B0/ 0 in the sample. 

When H reaches Hc1, and if nothing prevents either their penetration or their dis-
placement in the material, the vortices will ideally proliferate in such a way that the 
magnetic field flux B0S that impinges on the base of surface area S will cross by 
subdividing into Nv fluxons (Fig. 6.9) such that 

 B0S  0Nv .  (6.30) 

 
Figure 6.9 - Idealized soft superconductor 

In an idealized soft superconductor, the magnetic field flux B0
 which  

“invades” the sample crosses it by fluxons, each carrying a quantum of flux 0
 . 

The density of vortices per unit surface area of the the base is therefore 

 nv  B0

0
.  (6.31) 
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Because of repulsion between vortices, they tend to distribute themselves as uni-
formly as possible. Calculations show that the total free enthalpy is minimal when 
they organize into an hexagonal lattice in two dimensions, called the “ABRIKOSOV 
lattice” (Fig. 6.10). The distance dv between vortices in this lattice is 

 dv  2
3

1
nv

 2
3

0

B0  (6.32) 

or, dv
49
B0

 for dv in nm and B0 in T. 

A few numerical values are given in Table 6.6. 
Table 6.6 - Distance between vortices as a function of applied magnetic field  

In an ABRIKOSOV lattice the distances between vortices do not  
depend on the nature of the material, but just on the applied field. 

B0 [T] 10 2 10 1 1 10 100 
dv [nm] 490 155 49 15.5 4.9 

 
Figure 6.10 - ABRIKOSOV lattice 

Resembling a crystal lattice, vortices form a two-
dimensional lattice that is most commonly hexagonal. 

In practice the hypothesis that the external field is totally absorbed by the vortex 
lattice is not completely correct, since it would imply that  M  falls abruptly  
to zero immediately after Hc1. The discrepancy is due to the repulsion between  
vortices, that makes their penetration more difficult since any new ones are pushed 



6 - TYPE II SUPERCONDUCTORS 129 

away by those that are already present. The fraction of flux absorbed by the vorti-
ces is represented by the difference between the magnetization of the perfect dia-
magnet  M   H (the continuation of the dotted line in Fig. 6.1b) and the meas-
ured magnetization density  M . The rapid decrease of  M  at Hc1 shows that a 
large number of vortices penetrate instantaneously into the sample, but that the 
external flux is not totally absorbed and that LONDON-type screening remains. With 
increasing H, the fraction of the flux transmitted by the vortices becomes very 
large. 

The distance between vortices when B0 reaches Bc1  0 Hc1 is, using expres-
sions (6.26) and (6.32), 

 dv (Hc1) 2
ln

 (6.33) 

i.e. typically the penetration depth This means that at the phase transition be-
tween the MEISSNER and SHUBNIKOV phases, the LONDON regions of the vortices 
appear to be almost touching. The system is then, (see Fig. 6.14a) at the limit of 
isolated vortices with profiles as drawn in Figure 6.8. 

When the field grows, the vortices approach one another and their LONDON regions 
interpenetrate. 

6.6.2 - Imaging vortex lattices 

Following ABRIKOSOV’s work, great efforts were made experimentally to show the 
presence of vortices and to reveal the precise details of their organization. 

Following a suggestion of P.G. DE GENNES and J. MATRICON, proof of the exist-
ence of the vortex lattice in type II superconductors was given by diffraction exper-
iments with thermal neutrons11 performed by D. CRIBIER and his colleagues.12 

Figure 6.11 shows a neutron diffraction spectrum from a vortex lattice in a single 
crystal of niobium (dimensions 7  9 mm2, thickness 2.46 mm) of high purity that 
had been subject to annealing and surface treatments to eliminate any defect likely 
to hinder the vortex organization. This figure can be compared to diffraction imag-
es of atomic lattices: it is of a single crystal of vortices for which each diffraction 
point can be indexed according to the conventions of crystallography. We see 
clearly the symmetry of order 6 characteristic of an hexagonal lattice in two dimen-
sions, and from the position of the diffraction peaks we can directly deduce the 
distance between vortices. While this technique really brings decisive proof of the 
organization of the vortices into a regular lattice, it does not give a direct image. 

                                                        
11 As they have spin ½, neutrons interact with the magnetic field carried by the vortices. 
12 D. CRIBIER et al. (1964) Phys. Rev. Lett. 9, 106. 
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Figure 6.11 - Diffraction pattern of neutrons by a vortex lattice 
When they interact with the magnetic field of the vortices the neutrons are diffracted. This dif-
fraction pattern was obtained on a single crystal niobium sample of 7 × 9 mm2 with surface and 
thermal treatments aimed to suppress all defects likely to pin vortices. Obtained at 3.2 K under 
a field of 0.2 T, it reflects the existence, on the scale of the crystal, of a hexagonal single crystal 
of vortices. [From FORGAN et al. 2002, © The American Physical Society, with permission] 13 

The first images were produced by ESSMANN and TRAUBLE 14 in 1965 by a decora-
tion technique: nano-particles of cobalt were deposited by evaporation under vacu-
um onto a Pb-In sample. They are attracted to wherever on the surface the magnetic 
field is highest, namely where the vortices come out of the sample. Under a mag-
netic field of 0.02 T, they obtained the image of Figure 6.12, that clearly shows a 
lattice, whose lattice parameter is of the order of 350 nm. 

Figure 6.12 
Imaging an ABRIKOSOV lattice by decoration 
Pb-In; T = 1.1 K; B0 = 0.3 T 
Attracted by the magnetic fields, nano-particles 
of cobalt come to the points on the surface 
where the vortices come out of the sample.  
The black points correspond to the vortex cores. 
[From ESSMANN & TRAUBLE, 1967,  
© Elsevier, with permission] 13

 

It was only thanks to the development of the tunneling microscope in the 1980’s, 
that the vortices could be imaged precisely and that their cores could be explored. 

                                                        
13 E.M. FORGAN et al. (2002) Phys. Rev. Lett. 88, 167003. 
14 U. ESSMANN & H. TRAUBLE (1967) Phys. Lett. A 24, 526. 
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Figure 6.13 (a sample of NbSe2 at 4 K under a field of 4 T) shows an image pro-
duced by this technique. In this experiment, the distance between vortices follows 
the relation (6.32) almost perfectly. 

Figure 6.13
Imaging vortices by the tunneling effect15

NbSe2 sample; T  4 K ; H  4 T; size 630  500 nm
Because of their specific densities of states

for superconducting quasi-particles
(unpaired electrons), the vortices show

contrast and can be localized very precisely.
The points in black correspond to vortex cores.

Experiments using tunneling spectroscopy have allowed the vortex cores to be  
localized precisely, since they have the density of states of a normal metal while 
the regions outside them show a characteristic gap.16 Scanning measurements  
allow one to trace the profile of superconducting electrons densities even inside the 
vortex core. 

Vortices can also be visualized by magneto-optics, scanning HALL effect micros-
copy, micro-SQUID… 

6.7 - Critical field HH c2 

With the increase of the applied field B0, the vortices multiply and become more 
dense. The LONDON regions of neighboring vortices, which were practically touch-
ing at B0  Bc1, increasingly overlap one another. Inside the sample, B oscillates 
around B0 with an amplitude that is smaller and smaller as the field is raised. Each 
period of B corresponds to one extra fluxon (see the region of Fig. 6.14b shaded in 
gray). 
»  As long as the applied field remains weak, the vortex cores, of dimension   , 

stay well separated and the density of superconducting electrons still reaches ns
  

in the greater part of the sample (Figs 6.14a and 6.14b). 
»  When the field B0 approaches Bc2, the increasing density of the vortices becomes 

sufficiently high that now the vortex cores start to touch (Fig. 6.14c). The density 
of superconducting electrons collapses and the superconductivity disappears. The 

                                                        
15 STM Image: The tunneling spectroscopy image was obtained in the laboratory of 

D. RODITCHEV, Institute of Nanosciences in Paris, (CNRS & Pierre and Marie CURIE 
University). 

16 O. FISCHER et al. (2007) Rev. Mod. Phys. 79, 353. 
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amplitude of oscillations of the magnetic field in the sample decreases, and it  
becomes uniform and equal to Bc2. 

Qualitatively, the critical magnetic field Bc2 is the field value B0 for which the dis-
tance between two fluxons is of order . The field Bc2 obtained in the GLAG theory 
by energy arguments is 

 Bc2 
0

2 2 and Hc2 
0

2 0
2

 (6.34) 

for which, by the relation (6.32), the distance between vortices equals 

2
3

2.7 .  

 
——  magnetic field profile      ……  density profile of superconducting electrons 

Figure 6.14 - Vortices in the SHUBNIKOV phase 
As soon as they form at field Hc1, the LONDON regions of the vortices 
touch; as the field grows, they overlap. The superconductivity disap-
pears at the field Hc2 when the vortex cores of size 2  “fill” all of space. 

6.8 - Elements of the structure and dynamics of vortices 

Vortices are also physical objects studied for their own sake – people speak  
of “vortex matter” 17 – and whole conferences are devoted to them. They are the  
subject of much study, both theoretical and experimental, notably because of their  

                                                        
17 G. BLATTER & G.B. GESHKENBEIN (2008) “Vortex Matter” in Superconductivity Vol. I: 

Conventional and Unconventional superconductors,  
Eds. K.H. Bennemann & J. Ketterson, Springer, 495-637. 
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implication in electromechanical applications. In particular it is their mobility that 
plays a crucial role, since this property determines the capacity of a superconduct-
ing wire to bear high magnetic fields and to transport high current densities. 

The dynamics is introduced here in rather summary fashion, but we will return and 
develop the subject further in Chapter 7, devoted to the transport of current in 
type II superconductors in their SHUBNIKOV phase. 

We will say that a superconductor is “soft” if the vortices can move easily, other-
wise, when the vortices are strongly pinned, we will describe it as “hard.” 

6.8.1 - Penetration of vortices 

The question of the penetration of vortices into matter can be addressed by consid-
ering two different histories leading to the SHUBNIKOV phase. If we follow the first, 
the sample is cooled and brought to the superconducting state in an applied 
field B0; for the second, B0 is applied only after cooling under zero field. 
»  1st History: when the sample is cooled in a magnetic field B0 above the critical field 

Bc1  0Hc1, it enters the SHUBNIKOV phase directly. The vortices appear sponta-
neously with the superconducting phase and spread “uniformly” with a density 
such that they absorb the totality (or at least the greatest part) of the magnetic 
field flux that crossed the the sample in the normal phase. The average magnetic 
field in the sample, carried by the vortices as one fluxon each, equals B   B0. 

»  2nd History: when the sample is cooled and brought to the superconducting state 
in zero field, no vortex will form until the magnetic field applied at low tempera-
ture equals Bc1. Beyond this field, the creation of vortices is energetically favora-
ble, and we would expect to see a proliferation of vortices until they are suffi-
ciently numerous to absorb the external magnetic flux. To do this, however, they 
must be able not only to penetrate into the sample but also to move inside. 

The penetration mechanism is shown schematically in Figure 6.15: the LONDON 
currents are continuously distorted to form loops that separate into the form of  
vortices that can then migrate into the sample. 

 
Figure 6.15 - Process of forming a vortex at the surface  

The LONDON currents flowing on the outside surface are distorted at some  
favorable point to gradually form a loop, which then separates to form a vortex. 
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In a soft superconductor, migration is easy (Fig. 6.16a) and the vortices tend to 
spread out throughout the sample volume.18 In a hard superconductor migration is 
difficult and will be incomplete because of the many defects encountered. The vor-
tices formed will mostly stay close to the surfaces, with the stronger the interaction 
with defects, the higher the gradient of their concentration (Fig. 6.16b). They can 
only be moved towards the interior of the sample by application of high fields (see 
Chap. 7). 

 
Figure 6.16 - Distribution of vortices in soft and hard superconductors  

after cooling in zero field and then application of a field 
(a) In a soft superconductor, the vortices infiltrate the whole sample.  

(b) In a hard superconductor they are trapped by defects and tend to stay close to the surfaces. 

6.8.2 - Phase diagrams of vortices 

As the vortices repel one another and their mobility depends on the applied mag-
netic field, on the temperature and on their interactions with defects, numerous 
arrangements and dynamical régimes have been observed and/or predicted. Verita-
ble phase diagrams have been drawn. Among the phases most frequently met, we 
find: 

Vortex crystals 

At low temperatures, in a moderate field and in the absence of defects in the mate-
rial, the distribution of vortices is dominated by the repulsive interactions that lead 
to lattice formation. In an isotropic material the hexagonal lattice is the most stable 
but other lattices are also seen. We can speak of vortex crystals with their lattice 
parameters, their elastic constants and, in certain cases, their defects such as dislo-
cations and other topological defects. By neutron diffraction, very narrow peaks are 
obtained (“DIRAC peaks” convoluted with the instrumental resolution). 

                                                        
18 In certain cases, the vortices are repelled by surfaces, and once they have penetrated 

inside they are propelled to the center of the sample (see section 6.11.3). 
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BRAGG glass 

In the presence of a number of defects, which constitute as many trapping centers, 
the vortex lines will distort and, going from vortex to vortex, lose any memory of 
the position of the vortex at the origin. The vortex-vortex correlation function de-
creases slowly to zero with distance. The diffraction pattern is no longer constituted 
of “DIRAC peaks” but at the BRAGG positions there are peaks with diverging inten-
sity and wings decreasing with power laws. As order is lost progressively, in real 
space the vortex images are little different locally from those of a crystal, with six 
neighbors and without dislocations. This structure is given the name “BRAGG 
glass” 19 because of the many configurations that the vortex lines can take, making 
its ground state highly degenerate. The dynamical properties of this phase resemble 
those of glasses. 

Vortex glass 

When the distortion of the vortices becomes large, only short range remains, as in a 
glass. The distances between the closest neighbors do not differ very much but the 
distances between successive neighbors become further and further dispersed, with 
loss of long-range order. The diffraction pattern reduces to a few broad rings. 

Vortex liquid 

When the temperature increases and we approach the limit of stability of the super-
conducting phase, thermal fluctuations, that have been neglected up to now, in-
crease in amplitude. As long as their amplitudes remain less than the inter-vortex 
distance, they can be compared to atomic vibrations in a solid, but when they reach 
or exceed this value, the solid collapses, whether it is crystalline or glassy. We then 
speak of a vortex liquid, making the analogy to ordinary liquids, where long range 
order has been lost and in which each vortex can move over the entire sample. 

Phase diagram 

A typical phase diagram is shown in Figure 6.17. Within it we can see the 
MEISSNER phase below Hc1(T), the normal phase above Hc2(T) and three vortex 
phases: the BRAGG phase, the vortex glass and the vortex liquid, originally undif-
ferentiated with the generic name of the SHUBNIKOV phase. 

Other phase diagrams, generally more complex, have been published. Debate has 
been as much about the structure and dynamics of the different phases as the nature 
of the lines separating them, and of the singular points that appear. It is even more 
complicated in the cuprates where several types of vortex develop because of the 
strong anisotropy. The nature of the defects in each phase is of prime importance. 
The reality of the ABRIKOSOV lattice is not in question, but it is very clear that it is 
                                                        
19 T. GIAMARCHI & S. BHATTACHARYA (2001) Lecture notes in physics,  

Springer, 595, 314-360. 
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an ideal case, that to be observed necessitates special care in the preparation of the 
material (see the caption of Figure 6.11). 

 

Within the intermediate phase, known  
as the SHUBNIKOV or mixed phase, vortices 
form many phases whose diagrams  
depend strongly on the material and its 
microstructure. One of the simplest has 
an ordered solid phase where the  
vortices are periodically arranged in 
space, a disordered phase, also called  
a “vortex glass” and a disordered phase 
where the vortex are mobile, called a 
“vortex liquid.” More complex phase  
diagrams have been proposed with,  
for example, several crystal phases. 

Figure 6.17 - Example of a vortex phase diagram16 

6.9 - Electric transport in type II superconductors 

6.9.1 - The problem of type II superconductors 

As they can survive magnetic fields up to 13 T (NbTi), 23 T (Nb3Sn) and even up 
to much higher values (in cuprates or iron-based superconductors) without revert-
ing to the normal phases, type II superconductors appear to be the only potentially 
interesting candidates for the transport of intense currents and the production of 
high field superconducting coils. Since they acquire such performances only in the 
SHUBNIKOV phase, we might question their capacity to transport strong current 
intensities without losses by JOULE heating. In light of the major technological im-
plications, this problem will be treated in detail in Chapter 7 and here we will in-
troduce only a few general principles concerning the distribution of current density 
and the notion of critical current densities in the SHUBNIKOV phase. 

6.9.2 - Distribution of the current density 

In the SHUBNIKOV phase the distribution of current density is very different from 
that in the MEISSNER phase where, as we saw in section 2.6.2, the current is local-
ized near the external surfaces in a layer of thickness equal to the penetration 
depth . In fact in the SHUBNIKOV phase the superconducting electrons carrying the 
current can “sneak” across the LONDON regions of the vortices avoiding only the 
cores of radius  (   ) which are “almost” normal (Fig. 6.18). Therefore since 
the LONDON regions of the vortices are practically touching at Hc1 and above, and 
that the core radii are much smaller, we can consider that the electric current is 
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distributed quasi-uniformly through the parts of the sample penetrated by the vorti-
ces. This can be the whole volume when the vortices have infiltrated the whole of 
the sample, or a layer of the sample situated in the neighborhood of the surface if 
their distribution is as in Figure 6.16b. 

Figure 6.18
Transport in type II superconductors
In the SHUBNIKOV phase, superconduct-

ing electrons move in the LONDON

regions of the vortices avoiding the
almost normal cores. The current

distribution is then quasi-uniform.

From now on we shall denote by J  the locally averaged current density which 
flows across the LONDON regions of the vortices. 

6.9.3 - Critical current density 

In this way, in type II superconductors the current density J  which can flow with-
out JOULE heating is limited not by the critical value jc beyond which there is de-
pairing of the COOPER pairs (see Chap. 8) and a return to the normal state as pre-
scribed by the generalized SILSBEE criterion (see section 5.1), but by a critical 
curent density Jc due to a quite different mechanism. 

Indeed, in the SHUBNIKOV phase the electric current that is transported exerts forc-
es on the vortices that tends to displace them (see section 7.1.1). There are two pos-
sible outcomes: 
»  First possibility: The vortices, that are mobile, start to move. There is then dis-

placement of the point where the forces are applied, production of work and dis-
sipation of energy. To compensate this energy dissipation, it is necessary to pro-
vide electromotive work by applying a potential difference at the boundaries of 
the system. The superconductor no longer appears to be a perfect conductor: it 
becomes macroscopically resistive. 

»  Second possibility: The vortices, trapped by defects in the material remain fixed. 
Without displacement of the points where the forces are applied, there is no work 
produced and therefore no energy dissipation. In this case the material transports 
the current without JOULE heating. 
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The critical current density then becomes the value of J  that leads to “unpinning” 
of the vortices. In the following we will denote this new critical current density Jc

 . 
It decreases when we approach the critical line Hc2 or the critical temperature Tc 

and depends strongly on the mesoscopic structure and of the metallurgical state of 
the material. Introduction of impurities, defects and precipitates are parameters 
strongly influencing the value of this critical current density. 

In a soft superconductor, where vortices are easily displaced, the critical current 
density Jc is low; in contrast, it is high in a hard superconductor where vortices are 
strongly pinned. 

The critical current densities for depinning Jc, obtained after optimized thermal 
treatments, are between 103 and 104 A mm 2. For comparison, copper wires in do-
mestic appliances transport a few A mm 2. 

6.10 - Levitation in the presence of vortices 

Vortex pinning brings a qualitative explanation to the special features of the levita-
tion of type II superconductors that are seen with chips of high temperature super-
conductors such as YBaCuO. It differs from the levitation of type I superconduc-
tors in two respects. Firstly, the superconductor can be just as well in a levitated 
state above the magnet producing the field as in a suspended state below this mag-
net. Secondly, it tends to stay in a magnetic field of the same value as it was in 
when it made its transition into the superconducting state, and therefore this is how 
it is stabilized laterally. 

These new effects appear when the superconductor has been cooled in a magnetic 
field, and has trapped vortices during the Normal/Superconducting transition. The-
se vortices, behaving like strongly pinned canals by which the quantized flux 
crosses the sample, exert a restoring force on the superconducting material towards 
a magnetic field identical in form to the one it was cooled in. This includes the case 
when we invert the pair of magnet and superconducting chip. As we can convince 
ourselves by imagining vertical or horizontal displacements of the superconducting 
chip shown in Figure 6.19b, any departure from this position, while maintaining the 
tubes of magnetic flux that the vortices constitute, leads to a modification of the 
field lines outside the sample and leads to an increase in the magnetic energy. The 
effect of “restoring forces” is all the more efficient in that the cooling has taken 
place in a spatially varying magnetic field that has created curved vortices 
(Fig 6.19b). Of course, the stronger the pinning forces, the stronger the restoring 
force. 

A small superconducting train can move in levitation or in suspension above or 
below a rail along which the magnetic field topology is identical to that in which it 
was cooled. On the other hand, it is subject to forces of reaction that act laterally or 
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at the ends of the line, as we can see in Figure 6.19d. As it wishes to conserve the 
flux carried by the “last vortex”, the sample deforms the external lines of magnetic 
field. This increases the energy of the system and, in reaction to this, the sample 
feels a restoring force. The vortices act in a sense like springs that are increasingly 
rigid as the pinning forces are made stronger. 

We can obtain the same sort of behavior after cooling in zero field by forcing the 
sample into a position immediately adjacent to a magnet. The magnetic field must 
be sufficiently strong to make the vortices penetrate the sample. When the sample 
is released, it will find an equilibrium position in a weaker magnetic field within 
which the vortices become fixed. 

 
Figure 6.19 - Displacement and stabilization of a superconducting block on a rail  

 (hard superconductor cooled in a magnetic field) 
(a) Side view. (b) Front view. With a central track with “North pole upwards” and side tracks 
with “South pole upwards”, we have a rapid return of the field lines and a strong gradient 
of magnetic field which amplifies the repulsive forces. (c) The vortices tend to rest in a 
magnetic field whose topology is identical to the one they were created in. They can there-
fore move without friction along the rail. (d) When they arrive at the end of the rail, in a 
magnetic field different from the one that created them, the vortices feel a restoring force. 
The same type of restoring force guarantees the lateral stability of the superconductor. 

6.11 - A few illustrations of the diverse behavior of vortices 

Vortices depend on a multitude of parameters, such as the nature of the material, 
the geometry, the thermo-magnetic history of the sample, surface effects and even 
indirect parameters such as magneto-mechanical constraints. As a result, numerous 
stable or metastable configurations have been observed. We shall give examples to 
stimulate the curiosity of the reader, presenting five from a list that could be much 
longer. 
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6.11.1 - Effect of the demagnetizing field 

To avoid further complications, the rôle of the demagnetizing field has been ne-
glected in this chapter up to now. It is not absent, however, and can cause the ap-
pearance of phase mixtures similar to those we described in Chapter 5 for type I 
superconductors. For example, when the external field is close to Hc1, we can often 
observe a mixture of MEISSNER and SHUBNIKOV phases (Fig. 6.20). 

Figure 6.20 - “Intermediate” state of MEISSNER and SHUBNIKOV phases 
Near Hc1 and with demagnetizing fields, we sometimes see, with samples of materials at the type I-
type II limit, coarse mixtures of MEISSNER and SHUBNIKOV phases reminiscent of the mixtures of nor-
mal and superconducting phases in the intermediate state of type I superconductors (section 5.6). 
The images were taken of a niobium disk 40 mm in thickness, 4 mm in diameter, at 1.2 K and in a 
field of 74 mT. (a) Optical image showing the coexistence of two lamellar phases. (b) Image by a 
scanning electron tunneling microscope showing that the alternating bands are of MEISSNER and 
SHUBNIKOV phases (note the difference of scale between the two images). [From BRANDT & ESSMANN, 
1987, © Wiley-VCH Verlag GmbH & Co. KGaA] 20 

6.11.2 - Crystal growth by transported current 

Just as for atomic arrangements, the ABRIKOSOV lattice can be a single crystal or 
poly-crystalline. Neutron diffraction, which averages the order over the whole mac-
roscopic sample, revealed a polycrystalline structure for the vortex lattice in a sam-
ple of Pb-In (30 


 5.5 


 0.5 mm3, T  4 K, B0  0.2 T). This 2D poly-crystal is formed 

of grains of about 100 m2. In other words, taking into account the inter-vortex 
distance of 110 nm (relation 6.32), each grain contains of the order of 104 vortices. 

The curious feature of this system is that when sufficient current is present to  
de-pin the vortices, the diffraction pattern develops a texture revealing the gradual 

                                                        
20 E.H. BRANDT & U. ESSMANN (1987) The Flux-Line Lattice in Type-II  

Superconductors, Phys. Stat. Sol. B 144, 13. 
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formation of a single crystal (Fig. 6.21). The interpretation of the experimentalists 
was that numerous dislocations existing in the vortex lattice before the current 
passed were destabilized when the vortices were made to move. This is another 
proof of the interaction between the current transported and the vortex lattice. 

Figure 6.21 - Poly-crystalline and mono-crystalline ABRIKOSOV lattice  
Neutron diffraction patterns from a plate of Pb-In alloy of dimension 30  5.5  0.5 mm3 
at 4 K and in a magnetic field of 0.2 T: (a) In the absence of current, (b) and (c) with a 
current which, as its intensity increases, imparts to the the vortices the translational  
velocity indicated below each image. On a macroscopic scale the vortex lattice that 
was initially poly-crystalline (“powder” diffraction pattern) becomes progressively 
mono-crystalline. [From PAUTRAT et al., 2005, © The American Physical Society] 21 

6.11.3 - Repulsion by surfaces 

The most frequently found profile of the distribution of vortices is the “V-shaped”, 
also called the “BEAN” profile, where the vortices stay concentrated close to the 
surface because of pinning by impurities and are pushed inside only when the ap-
plied magnetic field leads to the penetration of new vortices. There are situations, 
nonetheless, where a dome-like profile occurs. This happens in systems where the 
vortices, once they have overcome the surface barrier, are pushed towards the cen-
ter of the sample and, because of the inter-vortex repulsion, they develop the pro-
file shown in Figure 6.22a. This is a situation we would expect to find in defect-
free samples where the extremely mobile vortices are subject to the repulsive forces 
from the MEISSNER currents and currents associated with the “corners” of the real 
samples, whose geometry differs from elliptical forms (geometric barriers). Most of 
the time, defects prevent the dome-shaped profile from developing, except in a few 
cases such as the compound MgB2. 22

 

                                                        
21 A. PAUTRAT et al. (2005), Phys. Rev. B 71, 064517. 
22 T. KLEIN, personal communication and L. LYARD et al. (2004) Phys. Rev. B 70, 180.  

See also L. LYARD (2005) MgB2, le supraconducteur à deux gaps, (MgB2,The Two-Gap 
Superconductor) Thesis, University Joseph-Fourier, Grenoble, France. 
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Figure 6.22 - Distribution of vortices into a dome 

(a) In a certain number of systems of appropriate geometry, vortices that have over-
come the surface barrier are pushed towards the center of the sample because of the 
interaction with surface currents where, owing to repulsive inter-vortex interactions, 
they assume a dome-like profile. (b) Example of a dome profile in plate-like samples 
of MgB2. It was determined by measuring the average magnetic field carried by the 
vortices. [With the kind permission of T. KLEIN, NÉEL Institute, Grenoble, France] 21

 

6.11.4 - Trapping vortex lines by depressions in thin films 

With the development of nanotechnologies, numerous studies have been made of 
the effects on superconducting properties and vortex behavior of the size of objects 
previously engraved on the sample surfaces. Many spectacular vortex configura-
tions have been observed in these experiments. 

As an example, in a niobium film of thickness df , circular depressions of depth db 
were etched (Fig. 6.23a). Above the critical temperature a magnetic field was ap-
plied perpendicular to the plane of the film, which was then cooled in the field. In 
spectacular fashion (Fig. 6.23b), the vortices are trapped around the depressions 
with, in addition, a vortex in the center if the hole is wide enough. 

This experiment stimulates questions concerning the interaction between a vortex 
and a thick step, as well as the form of repulsion between vortices that can lead to 
such regular order. 

6.11.5 - Effects of confinement 

While the effects of confinement had been predicted many years earlier,23 advanc-
es in micro-engraving techniques allowed evidence for them to be given for objects 

                                                        
23 H.J. FINK & A.G. PRESSON (1966) Phys. Rev. 151, 219;  

V.A. SCHWEIGERT, F.M. PEETERS & P.S. DEO (1998) Phys. Rev. Lett. 81, 2783. 
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of size comparable to the characteristic lengths  and . Particularly revealing  
results in this respect were obtained in a series of experiments at the Institute of 
Nanosciences in Paris 24 on the visualization of vortices by microscopy and tunnel-
ing spectroscopy. 

Figure 6.23 - Vortices trapped in a triangular lattice of open micro-holes 25 
(a) Open pits of depth df = 65 nm and diameter  4 m were etched in a triangular lattice of perio-
dicity  6 m in a niobium film of thickness df  170 nm. (b) After cooling in a field B0  6.37 10 4 T 
the vortices, imaged by decoration, were concentrated along the perimeters, except for one found 
at the center of each pit. [With the kind permission of B. PANNETIER, NÉEL Institute, Grenoble, France] 

A very instructive example is provided by the effects of a magnetic field on a 
mono-crystalline patch of lead, oriented in the (111) direction, that was fabricated 
by evaporation under high vacuum. The sample was a right-angled prism with rec-
tangular base of sides d  80 nm and D  140 nm and of height h  2.3 nm, which 
represents eight single atomic layers. 

In the bulk, lead is a type I superconductor ( 0  50 nm, 0  80 nm). Because of 
the reduction in the electron mean free path  to 2 or 3 times the height h, the char-
acteristic lengths of the superconductivity are renormalized (see Table 6.5) to 

0 0 /  and 0 , which lead those authors to estimate that after  
adjustment:   27 nm and   /   8 (   200 nm). With a GINZBURG-LANDAU 
parameter  1/ 2 , the patch of lead then becomes a type II superconductor  
capable of bearing vortices. 

As the width of the patch is within the range   d  , we can question whether it 
is possible to place vortices whose size, typically of the order of the penetration 
depth , is much larger than the object and whose core  is not much smaller. A 
series of situations is encountered (Fig. 6.24): 

                                                        
24 T. CREN et al. (2009) Phys. Rev. Lett. 102, 127005;  

T. CREN et al. (2011) Phys. Rev. Lett. 107, 097202. 
25 A. BEZRYADIN et al. (1996) Phys. Rev. B 53, 8553. 
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(a) B0  0: there are neither screening current nor vortices. 
(b) B0  0.2 T: the patch is in the MEISSNER phase. Because its size is much less 

than the penetration depth, the LONDON currents extend as far as the middle of 
the sample but, even so, do not manage to screen the external magnetic field 
completely (see section 2.4.4). 

(c) B0  0.6 T: a vortex has penetrated the sample. Associated with its field are 
swirling currents that are superimposed on the LONDON currents flowing in the 
opposite sense. A line of vanishing current appears. The magnetic field flux 
through the surface bounded by this line is equal to one fluxon 0 (see sec-
tion 9.5.3). 

(d) B0  0.8 T: a second vortex has penetrated the patch. The inter-vortex distance 
equals 1.43 , i.e. it is less than 2.7  that is the minimal distance predicted at 
Hc2 where a bulk superconductor transits to the normal state (Eq. 6.34). 

(e) B0  1 T: a third vortex has penetrated the sample. The distance between vorti-
ces has again diminished and becomes of the order of , i.e. three times smaller 
than the usual vortex-vortex distance at Hc2. We are in the presence of a super-
dense “vortex phase.” 

(f) B0  1.4 T: the entrance of a fourth vortex has lead to a fusion of the cores and 
appearance of a giant vortex with a single core, at the expense of four individual 
vortices. 

 
Figure 6.24 - Behavior of vortices in a confined space 

The patch has the form of a right-angled prism with a nearly rectangular base (width d = 80 nm, 
length D = 140 nm) and a very small height (8 atomic layers, h = 2.3 nm). The series of figures 
(a), (b), (c), (d), (e), (f) shows schematically the six situations described in the text as the mag-
netic field is raised. We observe the successive entry of vortices that become extremely close 
and eventually fuse into one giant vortex with a single core. The effective penetration depths 
and coherence lengths marked in Figure (a) allow us to compare the theoretical sizes of the 
core (diameter 2 ) and the range of the vortex currents (diameter 2 ) of an unconfined vortex. 

The restricted space has then caused, in this experiment, three effects: 
»  a change in the nature of the superconductivity: in nanometric dimensions Pb 

becomes a type II superconductor; 
»  the first effect of confinement: as soon as the second vortex enters, the inter-

vortex distance is already smaller than the minimal distance between vortices in a 
bulk material; 
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»  the second effect of confinement: when the density of vortices becomes too great, 
they fuse and form a giant vortex with a single core and carrying several fluxons 
(see section 9.5.3). 



Chapter 7 
 

FIELDS AND CURRENTS  
 IN TYPE II SUPERCONDUCTORS 

MODELS OF THE CRITICAL STATE 

Transport of electric current, without losses by the JOULE effect, and the generation 
of intense magnetic fields constitute the most important industrial uses of super-
conducting wires. In order to optimize performance, they must be capable of bear-
ing current densities and magnetic fields as high as possible. Because they have a 
critical magnetic field Bc  0 Hc that is always low, type I superconductors never 
have the properties needed. The same is true for type II superconductors in the 
MEISSNER regime since Bc1  0 Hc1 is generally less than a few hundredths of a 
tesla. Industrial electromechanical applications can be imagined only in the 
SHUBNIKOV phase, with stability limited by the magnetic field Bc2  0 Hc2, which 
can reach several dozens, or even hundreds, of teslas. It is therefore of prime im-
portance to understand the mechanisms of magnetization and current transport in 
this phase so we might prevent, or at least slow, energy dissipation, notably in pre-
venting vortex motion (see section 6.9.3). 

7.1 - Forces acting on vortices 

In a type II superconductor with a large GINZBURG-LANDAU parameter   / , a 
vortex element of unit length, in the presence of a current density J external to the 
vortex, is subject to a force 1 
 f  J  0 û  (7.1) 

where û is the unit vector parallel to the vortex axis and pointing in the direction of 
the magnetic field that this vortex carries. 2 Because of its form, f  is often called 
the “LORENTZ  force” or “LORENTZ-like force” even if its origin and interpretation 
are still the subject of much debate (see App. 7A). 

This general result covers several special situations that differ according to the 
origin of the current density J. 
                                                        
1 J. FRIEDEL, P.G. DE GENNES & J. MATRICON (1963) Appl. Phys. Lett. 2, 119. 
2 Sometimes the vector 0 of norm 0, oriented in the direction of the magnetic field car-

ried by the vortex is used. The force acting per unit length of the vortex is then J × 0. 

© Springer International Publishing AG 2017
P. Mangin and R. Kahn, Superconductivity, 
DOI 10.1007/978-3-319-50527-5_7

147



148 SUPERCONDUCTIVITY 

7.1.1 - Force exerted on a vortex by a transported current 

The first situation we consider is when the current density J, in the y direction, car-
ries a continuous current across the LONDON regions of the vortices that are present 
(see Fig. 6.18). 

As seen in Figure 7.1, the force acting on each vortex is transverse and directed 
perpendicularly to the direction of the current. 

 

Figure 7.1 
Force acting on a  
vortex in the presence of  
a uniform current density J 
In the presence of a uniform  
superconducting current density J, 
a vortex is subjected to a transverse 
force given by the relation (7.1). 

7.1.2 - Interaction forces between vortices 

Force between two vortices 

The second situation is when two vortices V1 and V2 are sufficiently close that 
each interacts with the vortex current of the other. An element of unit length of the 
vortex V1, which feels the current density j2 associated with the vortex V2 
(Fig. 7.2), is subject to a repulsive force from that vortex, 
   f 1-2  0 j2  û1  (7.2) 

where û1 is the unit vector along the axis of vortex V1. In return the vortex V2 
feels an equal but opposite force from V1. 

Figure 7.2 
Repulsive force between two vortices 
As each vortex feels the vortex current 
of the other, it experiences a repulsive 
force given by (7.2). 
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Force on a vortex within a group of vortices 

Within a group, each vortex interacts with the current density J that results from 
the superposition of the vortex current densities associated with all the others. Two 
situations merit particular attention: 
»  the vortices are uniformly spaced, in a lattice for example. The forces associated 

with the current densities of neighboring vortices compensate one another and the 
resultant force vanishes (Fig. 7.3a); 

»  the vortices are not uniformly spaced. There is no longer compensation and each 
vortex is subject to a net force that pushes it towards regions with relatively few 
other vortices (Fig. 7.3b). 

Figure 7.3 
Force felt by a vortex situated in a mass of vortices 

If it is in a mass of uniform density, (a), a vortex is 
subject to no force because of the compensation of 

vortex currents associated with neighboring 
vortices. In a non-uniform mass (b), it feels a force 

directed towards regions of low vortex concentration. 

Force density 

While it is interesting to know the force acting on a particular vortex, in fact it is 
more relevant to introduce the average force f (r)  3 that acts on each of the vorti-
ces situated in the vicinity of the point r where there is an average magnetic 
field  B(r) . As it is carried by the vortices themselves,  B(r)  is related to their sur-
face density 4 nv(r) by the expression 
 B(r)  nv (r) 0 û.  (7.3) 

Since the average local current density J(r)  that interacts with the vortices is relat-
ed to  B  by the fourth MAXWELL’s equation, the average force acting on each vor-
tex, per unit length is 
 f  J  0 û  (7.4) 

with 0 J   B.  (7.5) 

                                                        
3 We recall that a bar over a physical quantity represents a local average, while brackets 

indicate an average over the whole sample. 
4 The surface density of vortices is the number of vortices that cross a unit surface area 

perpendicular to their common axis. 
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To make sense, the averages need to be made over volumes containing a sufficient 
number of vortices and are restricted to distributions where nv varies slowly in 
space. 

Finally, in this context of averaging, we introduce the bulk force density F (r), the 
net force acting on all of the vortices situated in a unit element of volume around 
the point r. This force per unit of volume equals the average force per unit length 
of the vortex, multiplied by the vortex density, or 
  F  nv f  J  nv 0 û  J  B.  (7.6) 

7.2 - Energy dissipation by vortex displacement 

7.2.1 - Model of vortex flow 

Under the effects of the driving force f  that is written, when the current density is 
perpendicular to the direction of the vortices, 

 f  J 0  (7.7) 

each vortex can move. At the speed vv, it feels a drag force with the damping coef-
ficient  
 f  vv  (7.8) 

leading to the equation of motion, 

 f  mv
dvv
dt

 vv  (7.9) 

where mv represents an “effective mass” per unit length of a vortex. In the steady 
state, reached when dvv dt  0, the vortices move with a velocity 

 vv 
f


J 0  (7.10) 

which implies dissipation p per unit vortex length of 

 p  f vv 
J 2

0
2

 (7.11) 

and a power P dissipated per unit volume of the material, 

 P 
nv 0

2
J 2  nv vv

2.  (7.12) 

By analogy with the dissipative regime of a conductor of resistivity  that dissi-
pates power per unit volume of .j 2, we define the flux-flow resistivity ff by 

 P  ff J 2 i.e. ff 
nv 0

2
.  (7.13) 
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This dissipated power can only be compensated by a generator, the only external 
element connected to the superconductor. To drive the current I, it must maintain 
its terminals at a potential difference V such P   VI. 

7.2.2 - Induced electric field 

According to FARADAY’s law of induction the voltage induced across the ends of a 
filament equals 

 V   cut
t

 (7.14) 

where cut is the magnetic flux cut by the filament in its relative movement. We 
consider a sample in the form of a plate (Fig. 7.4) of length b in the y direction and 
of width a in the x direction and we specify, in the x direction a slice of dimen-
sion a sufficiently small that it can be considered as a “filament” of length b. As 
the current is flowing in the y direction the vortices oriented in the z direction move 
transversely, in the x direction. 

Figure 7.4 - Electromotive force induced by the displacement of vortices 
The potential difference (electromotive force) between the ends of a filament 
equals V    cut / t where cut is the flux cut by the wire during the time t. 

The vortices that cross the line defined by the “filament” between t and t   t are 
located, at the instant t, within a surface element dScut  bvv

 t, leading to the flux 
change 
 cut  BdScut  (nv 0 )(bvv t)  (7.15) 

and to a potential difference between the extremities of the “filament”, and there-
fore of the plate that is constituted of parallel “filament”, 

 V  cut
t

 nv 0 bvv .  (7.16) 

Using expression (7.10) for the speed of displacement of the vortices, the electric 
field in the plate can be written as 
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 E  V
b


nv 0
2

J  ff J  (7.17) 

where again the flux-flow resistivity appears, this time through the usual relation 
between the electric field E and the current density J .  

7.2.3 - The BARDEEN-STEPHEN model 

The microscopic mechanism at the origin of energy dissipation is rather complex. 
The model developed by BARDEEN and STEPHEN,5 reproduced in Appendix 7B, 
shows that movement of a vortex induces in its core an electric field. Subjected to 
this field, the normal electrons found in the core move and dissipate energy by 
JOULE heating. 

According to this model the damping coefficient can be written 

  0

n
0Hc2  (7.18) 

and the flux-flow resistivity ff, related to the damping coefficient by the rela-
tion (7.13) becomes 

 ff 
nv 0

2
 n

nv 0

0Hc2
 n

B
0Hc2

,  (7.19) 

an expression that is to be compared to the empirical relation proposed by KIM and 
STEPHEN starting from an analysis of experimental results 6 (Fig. 7.5) 

 ff  n
B0

0Hc2
 f T

Tc
.  (7.20) 

7.3 - Critical current density in type II superconductors 

7.3.1 - Pinning force 

So far we have not taken into account defects such as micro-cavities, impurities, 
precipitates, dislocations, and so forth, all of which can act to trap vortices and hin-
der their motion. 

The vortices, which interact strongly among one another and respond collectively, 
are only freed by application of a bulk force density F  greater than a “bulk pinning 
force” density FP

 7 that depends on the nature of the defects (chemical composition, 
size, concentration, distribution), but is also a function of the rigidity of the vortex 
lattice, the applied field and the temperature. 

                                                        
5 J. BARDEEN & M.J. STEPHEN (1965) Phys. Rev. 140, A1197. 
6 Y.B. KIM & M. J. STEPHEN (1969) in Superconductivity, R.D. PARKS ed.,  

Marcel Dekker, N.Y. 
7 We recall the definition: the bulk force is the force applied to the whole set of vortices 

contained in a unit volume. 
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Figure 7.5 - Flux-flow resistivity  

Flux-flow resistivity of a niobium-tantalum tape at different temperatures 
as a function of the applied magnetic field. The dotted line is the extrapo-
lation to T  0 K; its intersection with ff / n  1 gives to 0Hc2(0)  0.86 T. 
[From KIM et al., 1964, © The American Physical Society, with permission] 8 

7.3.2 - Critical current density 

Subject to bulk force densities F  from the interaction with the current density,  
the vortices do not move (collectively) as long as F   FP. De-pinning occurs when 
F  becomes at least equal to FP , that is, when the current density J  attains a criti-
cal density Jc that, taking (7.6) into account, is related to FP and the average 
field B  by 

 Jc 
FP
B


FP

nv 0
 (7.21) 

which leads us to specify that the regime becomes dissipative when J  Jc  or, 
because of (7.5), when | × B |  0 Jc. 

It is therefore equivalent to say that the vortices only start to move locally and that 
energy dissipation appears when any (and therefore all) of the following hold 
  F  FP J  Jc |  B | 0Jc .  (7.22) 

In general, FP and therefore Jc depend on the temperature T and on the field B . 

7.3.3 - Return to the flux-flow resistivity 

In a dynamical regime, the driving force exerted on each vortex becomes equal to 
the difference between the force f  F / nv  of interaction with the current and 
the pinning force fP  FP / nv  that resists the movement. Including the damping 
force f  vv  that must be added, the equation of motion becomes 

                                                        
8 Y.B. KIM et al. (1964) Phys. Rev. Lett. 13, 794. 
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f fP  mv

dvv
dt

 vv  (7.23) 

or, using (7.1) and (7.21), f fP  0 (J Jc )  (7.24) 

which leads to a speed of displacement in the steady state 

 vv 
(J Jc ) 0  (7.25) 

and to a voltage between the ends of the ribbon 

 V  cut
t

 nv 0 bvv  nv 0 b (J Jc ) 0  (7.26) 

which, with the expression for ff  (7.13), can be written 

 V  ff b(J Jc ).  (7.27) 

Such a relation of proportionality between an increment of current density J  and 
the resulting increment of voltage  V, 

 V
J
 ff b  (7.28) 

means that the flux-flow resistivity, the dynamical resistivity introduced in sec-
tion 7.2.1, has only a weak dependence on Jc and, to a certain extent, on the metal-
lurgical state of the sample. 

Even if the transition between resistive and non-resistive states is not as clearly 
defined as this model predicts, the proportionality between  V and J  is verified 
by experiment, as we can see in Figure 7.6, where two samples of Nb-Ta, after dif-
ferent thermal treatments, show identical voltage/current slopes above Jc. 

Voltage at the edges of two ribbons 
of Nb-Ta alloy subjected to different 
thermal treatments. Beyond the 
critical current, the voltage, obtained 
by extrapolation, increases linearly 
with the intensity. Sample (b), that 
contains more defects shows a high-
er critical current. The dotted line is 
the behavior expected from  
a defect-free sample characterized 
by a flux-flow resistivity ff. 

Figure 7.6 - Current/voltage characteristics of a soft Nb-Ta alloy: flux flow 
[From STRAND et al., 1964, ©The American Physical Society, with permission] 9 

                                                        
9 A. STRAND et al. (1964) Phys. Rev. Lett. 13, 794. 
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This result confirms the idea that unlike the pinning force density and the critical 
current densities,  depends weakly on the metallurgical state of the sample and 
hence on the structure of its defects. 

7.3.4 - Vortex jumps 

When superconductors are very hard, the critical current density becomes very 
large and in addition to flux flow, we can see vortex jumps due to the de-pinning of 
packets of vortices that were under great stress. The massive displacement of vorti-
ces is accompanied by a high production of heat, that can provoke the transition of 
the superconductor to its normal state. The resistivity then changes directly to that 
of the normal metal (Fig. 7.7). 

Figure 7.7 
Current/voltage characteristics of a 

hard superconductor: vortex jumps 10 
In a very hard type II superconductor, at the 

critical current density Jc, a massive 
de-pinning of the vortices (vortex jump) can 
cause the sample’s transition to the normal 

state, where it recovers the resistivity n . 

Vortex jumps also exist in the case of temperature fluctuations. By reducing the 
pinning force density FP, which can become less than F , a local heat fluctuation 
may be capable of producing a sudden vortex movement that dissipates heat, and 
thus an amplification of the thermal fluctuation, and finally an avalanche effect that 
can transform the material from the superconducting to the normal state. Vortex 
jumps are feared in superconducting coils that can, by this stochastic process,  
suddenly transit towards the normal state. An example of this will be given in  
Figure 7.18. 

7.3.5 - Vortex flux creep 

To distinguish it from “flux flow”, which describes the displacement of vortices 
under the effect of the force density F  FP, the term flux creep is used to denote 
the effects of de-pinning and mobility of vortices by thermal activation when 
F   FP. 

In superconductors with low critical temperatures, the effect is relatively limited 
because of the collective behavior of the vortices due to the rigidity of their lattice. 
This means that the height of the barrier to surmount is not the pinning energy of 
the individual vortex, but the much higher energy for a group of strongly bound 

                                                        
10 E.W. COLLINGS (1986) Applied Superconductivity, The International Cryogenics  

Monograph Series, volume 2, section 18, Plenum Press, New York. 
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vortices. In general the phenomenon of flux creep remains slow and is significant 
only when the difference between FP and F  becomes small. 

In High critical Temperature Superconductors (HTS), the effect is more pro-
nounced because of the weakness of pinning forces, which reduces the height of the 
barrier, of the effects of anisotropy, and of the higher temperatures at which they 
can be used, which increase exponentially the probability of crossing the barrier. 

7.3.6 - Other behavior 

If the current-voltage curves of Figures 7.6 and 7.7 are the most standard, they are 
far from universal, and specific behavior for the different vortex phases (see 
Fig. 6.17) has been predicted and observed.11 Among these, we find those of Fig-
ure 7.8 that concern vortex liquids with pinning centers and vortex glasses. In par-
ticular, the vortex liquid with pinning centers shows “Thermally Assisted Flux-
Flow” (TAFF) before it recovers to the ideal flux-flow regime, for which the curve 
of constant resistance passes through the origin. 

 

Figure 7.8 
Current/voltage 
characteristics of selected phases  
The vortex liquid with pinning shows 
a Thermally Assisted Flux-Flow (TAFF) 
regime which joins the flux-flow  
regime (the curve with constant  
resistance passing through the 
origin). [From BLATTER et al.,  
© Review of Modern Physics] 11 

7.4 - Models of the critical state 

7.4.1 - Critical state 

During current transport, or in response to an external magnetic field, the super-
conductor in the SHUBNIKOV phase carries a local average current density J(r) . In 
the non-dissipative regime, in other words in an equilibrium state where the vorti-
ces do not move, the distribution of J  is very different from what is seen in type I 
superconductors, and it can be described well by critical state models. 

                                                        
11 G. BLATTER et al. (1994) Rev. Mod. Phys. 66, 1125. 
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Critical state models require that at equilibrium, at each point of the superconduc-
tor, the current density J must either be equal to the critical current density Jc , or 
be zero. 

The justification is provided by the following argument, considering first the points 
where there are vortices and then those without vortices: 
»  at a point where vortices are present and are static (equilibrium situation), J  

cannot exceed Jc, since otherwise the vortices would begin to move. Neither can 
J be less than Jc since at some previous time the current density must have been 
greater than Jc in order to have moved the vortices to this point. Subsequently, 
when J  has returned to the value Jc because of their reorganization, the vortices 
can no longer move and J , which depends on their distribution (relations 7.3 
and 7.5), cannot decrease any further; 

»  in the opposite situation, at a point where there are no vortices, by the same ar-
gument none could ever have been there in the past. B , which is related to the 
vortex density by (7.3) must always have vanished, and J , which is related to B  
by (7.5), equals zero. 
Following the relations (7.22), we therefore have the equivalent statements valid 
wherever there are vortices 

            Critical state F  FP J  Jc |  B |  0Jc.  (7.29) 

7.4.2 - Laws of behavior 

As a precise determination of the pinning forces and their dependence on field and 
temperature turns out to be complex, engineers mostly use phenomenological laws 
for critical currents that are easier to handle. The simplest formulation was pro-
posed by BEAN 12 with a model requiring that critical current density Jc

Bean to be 
independent of B  and to be a function only of the temperature 

  Jc
Bean  (T ) (critical BEAN equation).  (7.30) 

This model is easy to use and allows us to give a rough idea, often sufficient, of the 
distribution of the vortices, magnetic fields and current densities in a sample sub-
ject to an applied magnetic field and/or carrying a current, notably as a function of 
its magnetic history. 

The price to pay for this simplicity is that it cannot cope with certain situations, and 
most importantly, cannot include the response of the superconductor subjected to 
high magnetic fields. To mitigate this, other more complicated laws have been pro-
posed with additional adjustable parameters, (BK and  ): 

                                                        
12 C.P. BEAN (1962) Phys. Rev. Lett. 8, 250. 
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» the critical equation of KIM-JI 13 Jc
KJ  (T )

B/BK
,  (7.31a) 

» the critical equation of KIM 14 Jc
Kim  (T )

1 B/BK
,  (7.31b) 

» the generalized critical equation 15  Jc
G  (T )

(1 B/BK )
.  (7.31c) 

Essentially these laws incorporate the way in which Jc decreases as a function of 
B  when the magnetic field approaches Bc2. 

7.5 - The BEAN model 

7.5.1 - Increasing field: vortex penetration 

Consider now a semi-infinite superconducting medium bounded by the yz plane 
through the origin (the other surface is very far away) and subject to a uniform 
field B11

0 oriented in the z direction. Anticipating the final results, we assume that 
inside the sample the magnetic field Bz (x)  decreases linearly, from its value B11

0 at 
the surface, where x  0, with a slope equal to 0 Jc

Bean  (Fig. 7.9a). Let x1 be the 
x-coordinate of the point for which B(x1)  0  (the position of the “vortex front”). 

0  x  x1 Jy(x)  1
0

 Bz
x
 1

0
0

nv (x)
x

 Jc
Bean  (7.32) 

x  x1 J y  , Bz  and nv are zero.  

Suppose we now change the field at the surface to a new value B2
0  B11

0 (Fig. 7.9a). 
The redistribution of vortices is not instantaneous, so that initially Bz (x) stays un-
changed, except close to the surface where by continuity of the magnetic field, 

Bz / x , which is the only non-zero component of × B, becomes greater than 
0 Jc

Bean . This local magnetic field gradient (see 7.22) generates a force density F  
acting on vortices near the surface that is greater than the pinning force density FP, 
pushing them towards the interior of the sample, and in this way stimulates the en-
try of new vortices. 

The penetration of the vortices and their displacements towards the interior of the 
material continues as long as there is some point where F  is greater than FP, that is 
where J  exceeds Jc

Bean. The process of entry and migration of vortices comes to 
an end only when the condition (7.29) | × B |  0Jc is again satisfied, 

                                                        
13 L. JI et al. (1989) Phys. Rev. B 40, 1936. 
14 Y.B. KIM, C.F. HEMPSTEAD & A.R. STRNAD (1962) Phys. Rev. Lett. 9, 306. 
15 Q.H. LAM, Y. KIM & C.D. JEFFRIES (1990) Phys. Rev. B 42, 4846;  

M. XU, D. SHI & R. FOX (1990) Phys. Rev. B 42, 1773. 
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i.e. when we  again find J y (x)  1
0

Bz
x
 Jc

Bean.  

In this new equilibrium state, the average magnetic field decreases linearly with 
slope 0 Jc

Bean  from the value B2
0 at x  0, until Bz  0  at x2. Beyond this, it 

stays at zero (Fig. 7.9b). 

 
Figure 7.9 - Model for the penetration of vortices in increasing field: advance of a vortex front  

(a) As the field at the surface increases from B1
0 to B2

0, the field distribution in the interior 
of the superconductor evolves progressively from B–1z(x) (curve a) to B–2z(x) (curve d). 

The equilibrium profile decreases linearly with slope J y (x) 
1

0

B
x
 Jc

Bean .  Hypo-

thetical intermediate stages (curves b and c) where J y (x) 
1

0

B
x
 Jc

Bean  are dotted. 

(b) Profile of the average magnetic field B–2z(x) and the average current density J–y(x) in 
equilibrium after application of the magnetic field B2

0. 

A further increase of the external field would induce a new displacement of the 
vortex front and a new linear profile of the magnetic field satisfying J y  Jc

Bean  
which justifies, a posteriori, the profile of B1z (x)  we initially assumed, at least if 
we are discussing the history the first time the field is raised. 

The current density Jc
Bean that flows between x  0 and the vortex front plays the 

role of a screening current which maintains a vanishing magnetic field beyond the 
vortex front. 

It differs, however, in nature from the screening current encountered in type I su-
perconductors or type II superconductors in the MEISSNER phase, where the current 
density decreases exponentially over the penetration depth , independently of the 
applied field. 
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In the BEAN model the current density is uniformly equal to Jc
Bean between the sur-

face and the vortex front, whose position is a function of the field at the surface and 
the critical current density (Fig. 7.9b). 

We note, however, that by assuming continuity between B0 and B , we did not take 
into account the LONDON currents flowing near the external surfaces. 

7.5.2 - Decreasing field: field profile and the vortex distribution 

Starting from the highest previous value B2
0, we now decrease the applied field 

down to a value B3
0  B2

0 (Fig. 7.10). 

 
Figure 7.10 - Evolution of the profile of the magnetic field for decreasing magnetic field  

(a) With the field at the surface decreased from B2
0 to B3

0, B–z(x) now follows the dashed line (d, g) 

where everywhere
Bz (x)

x
 0 Jc

Bean . The dotted lines (e, f) represent hypothetical intermediate 

states in which
Bz (x)

x
 0 Jc

Bean . (b) Profile of the average magnetic field B–3z (x) and of the 

average current density J–y (x) at equilibrium after application B3
0, following the previous value B2

0. 

As in the preceding section, a steep field gradient Bz (x) / x , this time positive, 
immediately appears close to the surface and, it is accompanied by a current densi-
ty J y  greater than the critical current density flowing in the y direction. This cur-
rent density imparts to the vortices involved a force density F   FP which now 
moves them towards the surface, until they are ejected from the material. The pro-
cess continues until J y  nowhere exceeds Jc

Bean, leading to a field profile with 

0  x  x3 Bz (x)
x

 0Jc
Bean  



7 - FIELDS AND CURRENTS IN TYPE II SUPERCONDUCTORS 161 

x3  x  x2 Bz (x)
x

 0Jc
Bean  (7.33) 

x  x2 Bz (x)  0  

where x3 is the x-coordinate of the plane where the current J y  changes sign. 

When subsequently the magnetic field at the surface takes values B4
0, and then B5

0, 
we obtain profiles of the average fields and current densities as shown in  
Figure 7.11. 

 
Figure 7.11 - Equilibrium states B–4z(x) and B–5z(x) after successive 
application of B4

0 and B5
0, following fields B2

0 and then B3
0, and 

the corresponding profiles of current density J–4y(x) and  J–5y(x). 
The straight-line segments of the average magnetic field profiles have slopes  0Jc

Bean. 

7.5.3 - Rules for the profile of magnetic field and current density  
(in planar geometry) 

We shall now consider the case of a plate-like sample with  B , the magnetic field 
parallel to the surfaces.  B  may be B0 alone, as in the preceding example, but more 
generally it is the total magnetic field on the surface, including the self-induced  
field BI created by the transported current. In the BEAN model, the curves of B  and 
J  obey a few simple rules: 
1 - B  is a broken line, composed of straight segments of slope  0Jc

Bean. Its origin 
is situated at B(x  0)  B  and it extends up to the vortex front beyond which 
B  vanishes. 

2 - The sections of negative slope Bz (x)/ x  carry a uniform current density  Jc
Bean 

in the y direction, while those of positive slope carry a current density  Jc
Bean. 
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3 - After each change in the surface magnetic field  Bi Bi1 , the new profile is 
obtained by drawing from the point (x  0,  Bi1)  a straight line of slope 
 Bz (x) / x  which will cut the preceding profile at an x-coordinate xi

 
1. This 

new straight section will replace the previous broken line over the interval 
[0, xi

 
1]. Beyond xi

 
1, the profile of B  is unaltered. 

4 - The vortex front never moves backwards. It advances into the sample a little 
more each time that the intensity of the surface field exceeds (independently of 
its orientation) any previous surface field. The position of the vortex front is at 
the x-coordinate xf  Bf / 0 Jc

Bean  where  Bf  is the highest surface field since it 
went superconducting. 

 If the vortex fronts coming from opposite sides of the sample meet, then rule 3 
applies. 

7.6 - Magnetization of a type II superconducting plate 

7.6.1 - Geometry and magnetization 

Following Appendix 4 (Eq. 4.52), the average magnetization over the entire sample 
is 

 

  

M  1
V

M(r)
V

d3r  1
V

B(r)
0

H(r)

V

d3r .  (7.34) 

For a sample with the form of a parallelepiped of sides c  b  a (Fig. 7.12) insert-
ed in a magnetic field B0 parallel to the largest dimension and therefore with zero 
demagnetizing field, which gives a constant H equal to B0/ 0, we have simply 

 M  1
0

B B0 .  (7.35) 

Figure 7.12 
Sample geometry 
Sample in the form of a parallelepiped with 
dimensions a  b  c and external field //z axis 
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Geometrically M  is proportional to the area, including signs, between the broken 
line representing B(x)  and the horizontal line with ordinate B0. 

7.6.2 - Initial magnetization curve (BEAN model) 

We shall now examine the different magnetic states that the plate acquires when we 
increase the field B0  0H0, starting from zero. The effects of decreasing and then 
reversing the field will be discussed in the next section. 
»  B0  0Hc1 (Fig. 7.13a): this is the MEISSNER regime. Neglecting the LONDON 

region, which affects only a tiny part of the sample, gives us 

 Bz (x)  0 ; M  B0

0
.  (7.36) 

»  0Hc1  B0  B* (Fig. 7.13b) where, by definition, B* is the value of B0 for which 
the vortex fronts meet at the medial plane of the sample. The vortices penetrate 
into the material starting from both surfaces. The fronts of the vortices reach the 
points  xf and  xf distant of uf  B0/ 0Jc

Bean from the surfaces. The average field 
in the sample and the average magnetization take the respective values: 

 B  B0 uf
a
 1

a
(B0 )2

0Jc
Bean ; M  B0

0
1 B0

a 0Jc
Bean .  (7.37) 

»  B0  B* (Fig. 7.13c). The magnetic field profile becomes V-shaped and the aver-
age magnetization corresponds to the basin formed by this V: 

 B  a
2 0Jc

Bean ; B  1
2

B ; M  B0

2 0
.  (7.38) 

»  B0  B* (Fig. 7.13d). The density of vortices increases, without modifying their 
gradient. The V-shaped profile of Bz (x)  is simply translated up by a constant 
value. 

The area included between Bz (x)  and B0 remains independent of B0, which means 
that the magnetization has reached saturation, 

 B  B0  1
2

B ; M  B
2 0

. (7.39) 

The curve of initial magnetization predicted by this model is represented in Fig-
ure 7.14. On the same figure we show typical forms of the measured mean magnet-
izations in: 
»  an ideal soft superconductor, where there is a decrease of total magnetization 

starting from Hc1 (see Chap. 6, section 6.8); 
»  a hard superconductor, where the decrease of magnetization begins at a field 

close to H* and tends to zero at Hc2. 
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Figure 7.13 - Initial magnetization of a plate (the BEAN model) 

The magnetic field is directed in the z direction. (a) B0 < Bc1; (b) Bc1 < B0 < B*; (c) B0 = B*; 
(d) B* < B0 < Bc2. B* is the value of B0 for which the vortex fronts join at the medial plane of 
the sample. In each figure we find from top to bottom: at the top, a schematic representation 
of the vortices crossing the xy plane; in the middle, the average local field Bz (x) whose slope 
is either zero or ± 0Jc

Bean; at the bottom, the superconducting current density J y . The aver-
age magnetization is directly proportional to the grey area included between B0 and Bz (x) . 
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Figure 7.14 - Initial magnetization curve in the BEAN model  

Points a to d correspond to the situations referred to by the same letters as in Figure 7.13. Typi-
cal curves of initial magnetization of samples of soft and hard superconductors have been add-
ed for comparison (with the value of Bc1 exaggerated to make the different regimes apparent). 

7.6.3 - Hysteresis loop in the BEAN model 

Starting again from the magnetized state given by Figure 7.13d that corresponds to 
the maximum applied field B0  B0

max, we shall now decrease the field to zero, and 
then inverse it down to B0

max. Different intermediate stages, as obtained by the 
rules defined in section 7.5.3 are represented in Figure 7.15. 

 
Figure 7.15 - Magnetization of a plate. Evolution of the average local field Bz (x)  

during the decrease, then the reversal of the field 
The history follows that of Figure 7.13. The average magnetizations, proportional to the 
signed area between B0 and Bz (x),  are marked on the curve of Figure 7.16 (points e to k). 
(e) B0

max > B0 > B0
max  B*; (f) B0 = B0

max  B*; (g) and (h) B0
max  B* > B0 > B0

max  2B*; (i) and 
(j) B0

max  2B* > B0 >  B0
max. 

»  B0
max  B0 > B0

max  2B* (section between d and h Fig. 7.16 - (e) (f) (g) Fig. 7.15) 
The magnetization has the form of a line bent into four segments, leading to 
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 M  1
0

1
2

B*  (B max
0 B0 ) 1

4
(Bmax

0 B0 )2

B* .  (7.40a) 

The coercive field B0
coer, where the magnetization vanishes, (e) and the saturation 

field B0
sat where the magnetization saturates (h) are 

 Bcoer
0  Bmax

0 (2 2)B and Bsat
0  Bmax

0 2B*.  (7.40b) 

»  B0
max  2B* > B0   B0

max (section between h and k Fig. 7.16 - (h) (i) (j) Fig. 7.15) 
Bz (x)  recovers its V-shape, but is inverted with respect to (7.13d). Inverse satu-
ration is reached with 

 
 

B  B0  1
2

B* ; M  B*

2 0
.  (7.41) 

Figure 7.16 shows that the BEAN model predicts the same general form as the  
experimental hysteresis loop, at least as long as the field B0

max is not much greater 
than B*. 

Figure 7.16 
Typical hysteresis loop of a  
type II superconductor  
for the case of a maximum field 
greater than B*, but well below Hc2 
Points a to d and e to j correspond to 
the situations referred to by the same 
letters as in Figures 7.13 and 7.15. 

7.6.4 - Hysteresis loop in the KIM-JI model 

The phenomenon of saturation of the magnetization given by the BEAN model 
comes from the fact that, as the critical current density does not depend on the 
field, the rigid V-shaped profile of B  is simply translated when B0

 increases. In 
order to have a reduction in the magnetization for high values of B0 we would need 
this V to flatten, i.e. that in the critical state the gradient Bz / x  should decrease, 
and that the corresponding critical current density Jc should diminish as the field B  
grows. 

The expressions (7.31) clearly go in this direction and, as an example, we will con-
sider the KIM-JI model whose behavior is given by the expression (7.31a). Applied 
to the plate geometry in Figure 7.12 it predicts, as we move into the sample (u is 
the distance from the closer surface), 



7 - FIELDS AND CURRENTS IN TYPE II SUPERCONDUCTORS 167 

 
dBz
du

 0
Jc

KJ

Bz /BK
or Bz  (B0 )2 2 0BKJc

KJu  (7.42)  

which leads to the profiles of Figure 7.17. It is seen that the areas between B0 and 
B  (shaded in grey in the figure), fade away in high fields. 

 
Figure 7.17 - Magnetic field B  within a plate in the KIM-JI model  

A curved profile replaces the straight V-shape (the dotted line) of the BEAN 
model. The grey areas that represent the average magnetization are less 
than predicted by the BEAN model and tend to zero when B0 becomes high. 

A typical form of the hysteresis loop is shown in Figure 7.18. The different expres-
sions for the initial magnetization curve determined starting from (7.42) are indi-
cated in Table 7.1. This model and its variants (7.31) reproduce experimental hys-
teresis loops satisfactorily, both for complete cycles and for secondary loops 
(cycles between two values of B0). In the figure we have added some effects of flux 
jumps, as described in section 7.3.4. 

Table 7.1 - Average magnetization of a plate as predicted by the KIM-JI model  

B0  0 Hc1  M 
B0

0
 (very weak)  

 0 Hc1  B0  B*  

 

 M 
B0

0

2

3

B0

B*

2

1  
 
uf 

a

2

B0

B*

2

 

B0   B  0BKJ c
KJa

  
M  M* 

B*

3 0
 uf 

a

2
(xf  0)

 B0  B*  

 

M 
B0

0


2

3

B0

0

B0

B*

2

1 1
B*

B0

2 3/2
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Figure 7.18 - Form of the hysteresis loops of type II  superconductors 16 

As well as a complete cycle of hysteresis between extreme values B0
max close to Bc2 

, 
we indicate the initial curve of magnetization and secondary cycles between inter-
mediate values of B0. These loops are reasonably reproduced by the KIM-JI model or 
its variants, as defined by the relations (7.31). In this figure we have added effects of 
“flux jump” which can occur randomly when there is a very high local magnetization. 

Note finally that the hysteresis curves may be significantly modified by the super-
position of flux-creep effects. Their forms therefore depend on the speed with 
which the fields are swept. 

7.7 - Magnetization in cylindrical geometry (BEAN model) 

While the parallelepiped is the simplest to treat, cylindrical geometry is more rele-
vant to superconducting wires of Nb-Ti and Nb3-Sn, that are widely used in the 
construction of high field coils. We will consider here only the situation where the 
magnetic field B0 is applied along the cylinder axis, as the calculations for perpen-
dicular field are much more burdensome. 

7.7.1 - Magnetization of a solid cylinder 

In the usual cylindrical coordinate system, where the magnetic field is oriented 
along the z axis, the relation (7.29) can be reduced, whenever B  is non-zero, to 

 Bz
r

  0Jc
Bean.  (7.43) 

With the boundary conditions including the condition that at the surface of a cylin-
der of radius surface R, Bz (R)  B0 , integration of (7.43) leads to 

 Bz (r)  B0
0Jc

BeanR 1 r
R

 (7.44) 

                                                        
16 Cycle adapted from measurements by A.M. CAMPBELL, J.E. EVETTS & DEW-HUGHES 

(1966) Phil. Mag. 10, 333; 
J.E. EVETTS, A.M. CAMPBELL & DEW-HUGHES (1966) Phil. Mag. 10, 339. 
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which places the vortex front on a cylinder of radius rf given by 

 rf  R B0

0Jc
Bean .  (7.45) 

Exactly as for the plate, the field B* is defined as being the value of field B0 for 
which the vortex fronts join, or rf  0 (Fig. 7.19a), 

 B  0Jc
BeanR.  (7.46) 

Table 7.2 - Average magnetization of a cylinder predicted by the BEAN model  

Initial  
magnetization 

B0  B  M 
B0

0

1
B0

B


1
3

B0

B

2

 

B0 B  M 
B

3 0

 

Decrease,  
then inversion 
of the field 

B max
0 2B  B0  B max

0   
M 

B*

12 0

4 12
U

B
 6

U

B
 2

U

B
 3

 

U  B max
0 B0  

B max
0  B0  B  M 

B
3 0

 

Calculated starting from expressions (7.44) and (7.34), the average magnetization 
in the cylinder is given in Table 7.2. 

 
Figure 7.19 - Magnetic field and magnetization of a cylindrical sample 

(a) Distribution of the average local field predicted by the BEAN model across a diameter 
during the first application of the field up to the field B0

max, then at the beginning of the 
decrease in field (dotted curve). (b) Hysteresis loop predicted by the BEAN model. 
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The current density J  1
0

Bz
r

 associated with the field  B  is normal to the radi-

al direction (Fig. 7.20). The screening effect clearly makes sense only for B0  B*, 
and only for the first time the field is increased. 

 
Figure 7.20 - Current density in the superconducting cylinder 

subject to an axial field (BEAN model)  
The current density, equal to the critical current density Jc

Bean when non-zero, is circu-
lar. (a) B0 < B*: the current flows between rf and R (see Fig. 7.19a). It acts like a screening 
current for the part inside the radius rf for which the field B  stays at zero. (b) B0  B*: 
the circular current has invested the whole sample. (c) In decreasing field the current is 
inverted in an external sheath which grows gradually to include the whole sample. 

7.7.2 - Magnetization of a thick-walled tube 

Let us now consider a cylindrical tube with a thick wall, of external and internal 
radii, Re and Ri respectively, cooled in zero field and then subjected to a magnetic 
field B0 parallel to its axis and external to the tube (Fig. 7.21). 

 

Figure 7.21 
Magnetic field in a tubular geometry 
The experiment consists of applying  
a magnetic field outside the tube  
and measuring the magnetic field  
in the empty central part. 

As long as rf is greater than the internal radius Ri, the evolution of the profile of B  
is exactly like that seen for the solid cylinder, with the magnetic field staying at 
zero inside the cylinder of radius rf . This is true both in the material and in the 
empty central core. The external field is shielded by the current density  J  Jc

Bean  
that flows between rf and Re. 
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Beyond the magnetic field B0  B** for which rf  Ri , the vortex front can no longer 
progress. To maintain a gradient Bz / r  equal to 0Jc

Bean between Ri and Re, 
there is no other solution than allowing a magnetic field Bi to penetration into the 
central part with value, 
 Bi  B0

0Jc
Bean(Re Ri ).  (7.47) 

Physically the magnetic field Bi increases by transferring fluxons from the outside 
to the inside: each increase in B0 temporarily enhances the gradient of B  between 
Re and Ri. This has the effect of displacing the vortices towards the central part and 
“emptying” them there by increasing Bi until the critical gradient is re-established. 
The evolutions of the profiles of B  and of Bi in equilibrium are represented in  
Figure 7.22. 

The average magnetization (7.34) formally includes two contributions: the first due 
to the difference between B  and B0 in the material, the second coming from the 
central cavity because of the equivalence between screening currents which act as 
AMPÈRE CURRENTS, and magnetization, the interior vacuum appear as “magetiz-
ized” (see Fig. 4.2). 

 
Figure 7.22 - Magnetic field in a tubular cylinder with a thick wall  

and in the empty central core (BEAN model) 
The magnetization is represented by the difference between B  and B0. 
Starting with profile e, two contributions appear: one in the material 
and one in the empty core (from the difference between Bi and B0). 

7.8 - Experimental evidence for critical states 

By inserting a HALL probe in a hole drilled perpendicularly to the axis of a sample of 
Nb-Ti in the form of a solid cylinder, COFFEY measured the magnetic field profile B  
in an increasing field B0. The result of this experiment is shown in Figure 7.23. 

The first observations in the study were a series of profiles characteristic of critical 
states, reminiscent of the BEAN model, but closer to those of Figure 7.17 deduced 
from the KIM-JI model (relation 7.31a). This behavior constitutes an undeniable 
experimental proof of the critical state model. 
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Figure 7.23  -  Evidence for the critical state.  

Measurement of the magnetic field in a solid cylinder 
Variation of the average magnetic field measured with a HALL probe of dimen-
sion 5×10 m along a diameter drilled across the sample. The measurements 
were made in increasing field starting from zero field. Two “flux jumps” were ob-
served at fields B0

fj1 and B0
fj2 . [From COFFEY, 1967, © Elsevier, with permission] 17 

However even before the vortex fronts reached the center of the sample, COFFEY 
observed the phenomenon of “flux jump,” that we discussed in section 7.6.4 
(Fig. 7.18). When the magnetic field reaches B0

fj1, an avalanche of flux jumps in-
creases the temperature and transforms the material to the normal phase, allowing 
the magnetic field to penetrate the sample uniformly. When cooling in field B0

fj1 
and recovering the superconducting state, the vortices form spontaneously and dis-
tribute themselves quasi-uniformly in the sample giving B B fj1

0  and M   0. 
With a further increase in B0, new vortices enter by the surfaces, in agreement with 
the critical state models, until the appearance of new accidental flux jumps at a 
field B0

fj2. 

Another way to test the critical field model consists of measuring the internal mag-
netic field of a hollow cylinder inserted in an external field B0. Admittedly this 
method does not lead to determination of the profile of B , but it is less aggressive 
and allows us to collect some valuable information.  

The results shown in Figure 7.24 are, once again, in agreement with critical state 
models: 
»  Bi stays zero as long as B0 has not reached B**; 
»  Beyond B** the difference (B0  Bi)  is, however, not constant as it would be in the 

BEAN model, but decreases as predicted by the KIM-JI model and its variants. 

                                                        
17 H.T. COFFEY (1968) Distribution of magnetic fields and currents in type II  

superconductors, Cryogenics 7, 73. 
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Figure 7.24 - Magnetic field inside a hollow cylinder subject to a field B0 

In agreement with critical state models, the magnetic field in the tube is zero 
as long as B0 is less than a field B**. The difference between the external 
field B0 and the internal field Bi , indicated by a double arrow, decreases when 
B0 grows as predicted by the KIM-JI model and variants. [From HEMPSTEAD, KIM & 
STRNAD, 1963, © American Institute of Physics, with permission] 18 

7.9 - Current transport in the SHUBNIKOV phase 

7.9.1 - Current transport in the absence of applied magnetic field  

In the absence of an applied field, the only magnetic field present in a linear  
conductor is the self-generated magnetic field BI created by the transported current. 
A field due to a winding of the wire (or ribbon) would be included here as an ap-
plied field. 

Let us then consider a straight ribbon (Fig. 7.25a) of a type II superconductor in the 
SHUBNIKOV phase, centered at x  0, of thickness a and width c, that carries a cur-
rent of intensity I flowing in the positive y direction. The current generates a mag-
netic field BI oriented in the z direction with absolute value depending only on x. 

By application of AMPÈRE’s theorem, we have 

 
 
B a

2
B a

2
 0

I
c

 ẑ  (7.48) 

wich, in the absence of applied field this leads to 

 
 
B a

2
 0

I
2c

ẑ ; B a
2

 0
I

2c
ẑ.  (7.49) 

                                                        
18 C.F. HEMPSTEAD, Y.B. KIM & A.R. STRNAD (1963)  

Inductive Behavior of Superconducting Magnets, J. Appl. Phys. 34, 3226. 
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Applying the rules of the BEAN model, and imposing these boundary conditions we 
find 

 a
2
 x  xf Bz (x)  0

I
2c 0Jc

Bean x  a
2

 (7.50a) 

 xf  x  a
2

Bz (x)  0
I

2c
 0Jc

Bean a
2

x  (7.50b) 

 xf  x   xf Bz (x)  0  (7.50c) 

where xf, the position of the vortex front in the positive region, is given by 

 xf 
1
2

a I
cJc

Bean .  (7.51) 

The profile of current density 
 
J y (x)  1

0

Bz
x

( 0 J   B)  associated with the 

relations (7.50), (Fig. 7.25b), shows that the current flows near the surfaces in a 
layer of thickness 

 uf 
I

2cJc
Bean  (7.52) 

with a uniform density Jc
Bean. 

 
Figure 7.25 - Critical states of a superconductor transporting a current of intensity I   

in the absence of an external magnetic field (BEAN model) 
(a) Geometry of the system. The current crosses the section from the front 
to the back. (b) Critical state with current I < Ic : average field Bz (x)  and 
current density J y (x).  (c) Critical state at the critical current Ic . 
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An increase in the intensity leads to a greater value of B  which produces a dis-
placement of the vortex front towards the median plane. When the two vortex 
fronts meet (xf = 0), the current density J  becomes uniformly equal to Jc

Bean and 
the current intensity then takes the value 
 

 
Ic  acJc

Bean.  (7.53) 

Beyond this intensity Ic, a magnetic field gradient exceeding 0Jc
Bean is created 

within the superconductor. Once again, this pushes the vortices from the surfaces 
towards the center of the plate, where they meet. Since those coming from the right 
and those from the left carry opposite magnetic fields and whirlwind currents flow-
ing in opposite senses, these vortices annihilate without restoring the field gradients 
of the critical state. There results a permanent flux of vortices penetrating by each 
surface and annihilating at the center, without reaching any state of equilibrium. 

The intensity Ic appears as a critical intensity beyond which there is no current 
transport without dissipation of heat because of the constant movement of the vor-
tices. 

If we decrease the intensity of transported current and bring it to zero, B  diminish-
es but J  never comes back to be uniformly zero (Fig. 7.26). There remain trapped 
fields and currents flowing in opposing senses. 

 
Figure 7.26 - Critical states of a superconductor carrying a current intensity  

that decreases, starting from Ic ..  (a)  0  I  Ic ; ((b)  I  0 
At zero current, the current density alternates in sign with amplitude Jc

Bean. 
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7.9.2 - Current transport in an applied magnetic field 

The same plate, carrying a current of intensity I in the y direction is now inserted 
into a magnetic field B0 parallel to the z axis. As the self-generated field BI and the 
applied B0 are oriented in the same direction, they add on the surface of coordinate 
x   a / 2 and subtract on the surface x   a / 2, leading to 

 Bz
a
2

 0
I

2c
 B0 ; Bz

a
2

 0
I

2c
 B0.  (7.54) 

Supposing that the intensity I increases at constant B0, we obtain successive critical 
states, as those presented in Figure 7.27: 
»  I  0 (Fig. 7.27a): the situation is identical to that of Figure 7.13b. Currents of 

intensities equal to Jc
Bean flow in opposite directions within layers of the same 

thickness near each of the two surfaces. 
»  I  acJc

Bean (Figs. 7.27b and 7.27c): 
› On the side x  0: B( a / 2)  increases. Vortices penetrate by the face situated 

at  a / 2 and the vortex front moves towards the opposite side.  
› On the side x  0: B(a / 2)  decreases. The profile of B  is transformed into a 

broken line, consistent with the rules of section 7.5.3. 
The current density takes the forms of Figures 7.27b and then 7.27c. There re-
main layers where the current density is oriented opposite to the direction of the 
transported current. 

»  I = Ic = acJc
Bean (Figs. 7.27d and 7.27e): 

J  becomes uniform and equal to Jc
Bean, and B  reduces to a straight line  

of slope  0Jc
Bean. Figures 7.25d and 7.25e correspond to 

 
B0  0

Ic
2c

 and 

 
B0  0

Ic
2c

 respectively. 

»  I  Ic: Following situations (d) and (e), there are the two possibilities: 

› 
 
B0  0

Ic
2c

: B  passes through zero. The vortices enter each of the two faces 

with opposite signs and are driven towards the vortex front where they annihi-
late in pairs. 

› 
 
B0  0

Ic
2c

: B  is always positive. The vortices enter by the face x =  a / 2, 

cross the sample, and exit by the opposite face at x =  a / 2. 

In either of the two cases just described, the movement of the vortices produces 
dissipation of energy and the ribbon is no longer a perfect conductor. 
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Figure 7.27 - Critical states of a superconductor carrying a current of intensity I  

in the presence of an external magnetic field B0 (BEAN model) 
 (a) I  0; (b)-(c) I  Ic ; (d) I  Ic and B0  ( 0Ic)/(2c); (e) I  Ic and B0  ( 0Ic)/(2c) 

At the surfaces, x   a/2 the current creates a self-generated field 
BI  ( 0I )/(2c) that, depending on which face it is, is added to or subtracted 
from B0. We take the case where B0  B*. The current density is Ic  acJc

Bean. 
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Appendix 7A 
Different aspects of the “LORENTZ force” 

A7A.1 - Introduction 

The expression for the force per unit length f  acting on a vortex immersed in a 
current density J, 
 f   J × 

0û (7.55) 

where û is the unit vector parallel to the axis of the vortex oriented in the sense of 
the magnetic field, even today continues to be the object of discussion and debate. 
This is despite the fact that it was accepted long ago and has been analyzed by 
many authors. 19, 20, 21 Three different origins, presented as being in competition or 
complementary, are most often invoked: 
»  the LORENTZ force between the magnetic field attached to the vortex and the cur-

rent density J; 
»  the LONDON force, which is derived from the energy of interaction between vor-

tices, and whose form depends directly on the second LONDON equation and its 
extension to the interaction between an external current and a vortex; 

»  the MAGNUS force, of hydro-dynamical origin, which applies to a rotating body 
immersed in a moving fluid. 

The aim of this appendix is limited to introduce these forces, while referring the 
reader to more specialized articles for a more thorough discussion. 

We shall keep to the case of a superconductor with a very large GINZBURG-
LANDAU parameter , and thus with vortices of small core radius . The lines of 
current J cross the magnetic field region associated with the vortices, that is they 
are tangled with the vortex currents that extend over a distance  very much larger 
than  (Fig. 7.28). Only the case of a fixed vortex will be considered. 

 

Figure 7.28 
Vortex immersed in a current of density J 
The current J crosses the LONDON region of 
the vortex with its magnetic field and vortex 
currents (the central part is the vortex core). 

                                                        
19 J. FRIEDEL, P.G. DE GENNES & J. MATRICON (1963) Appl. Phys. Lett. 2, 119;  

P.G. DE GENNES & J. MATRICON (1964) Rev. Mod. Phys. 36, 45. 
20 P. NOZIÈRES & W.F. VINEN (1966) Phil. Mag. 14, 667. 
21 J. BARDEN & M.J. STEPHEN (1965) Phys. Rev. 140, A1197. 
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A7A.2 - LORENTZ force 

Figure 7.29 
LORENTZ force 

The current density J and the 
electrons that carry it are subject to a 

LORENTZ force fLz towards the right, iden-
tical to the force f  acting on the vortex. 

When it crosses the magnetic field of the vortex, each of the electrons carrying the 
current density J, as it moves with velocity vJ, feels at the point r a force 

  fLz
(e)  ( e)vJ  B(r)  (7.56) 

where B(r) is the magnetic field associated with the vortex centered at the origin. 

Denoting by ns the number of superconducting electrons per unit volume that carry 
the current density J, 
 J  ns( e)vJ  (7.57) 

the total LORENTZ force fLz per unit length of the vortex can be written, by integrat-
ing over the surface through which there is non-zero magnetic field associated with 
the vortex, as 
 f Lz  ns( e)(vJ  B)

s
dS  J  0 û  (7.58) 

which is seen to be equal to f . 

This model is, however, rejected by many authors 22 since if the magnetic field 
associated with the vortex imparts a force fLz on the current density J, the vortex 
should experience the equal and opposite force of reaction, which would then 
be  f . 

A7A.3 - LONDON force 

This force is a generalization of the repulsive force between two vortices (see sec-
tion 7.1.2). 

Field and kinetic energies 

As we showed in Chapter 2, the free energy of a superconducting sample of vol-
ume V  is the sum of the kinetic energy of the electrons and of the magnetic energy 
integrated over the whole volume V  (relation 2.59), 

 
 
E  1

2 0
B2  2(  B)2

V
d3r.  (7.59) 

                                                        
22 O. NARAYAN (2003) Journal of Physics A 36, L373. 
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Using the relation (u  w)  w (  u) u (  w)  (7.60) 
with w  B and u  × B, this energy can be written  

    
 
E  1

2 0
B2  2B  (  B)

V
d3r 1

2 0
(  B)  B)  

V
d3r  (7.61) 

or, applying STOKES theorem, and thereby transforming the second term into an 
integral on the surface  enclosing the volume, 

         E 
1

2 0
B  2  (  B) B

V
d3r

1

2 0
(  B)  B  d .  (7.62) 

When the magnetic field and the current density are associated with one or several 
parallel vorticies, and because the vector product ( × B) × B decreases faster than 
the integration surface around the vortex lines grows, only the bulk term remains. 
The  sum of the magnetic energy  and of the kinetic energy of the electrons is then, 
per unit of length of the vortices 

 
1

2 0
(B  0

2  j) B
S

dS  (7.63) 

where j is the current density related to B by × B  0 j and dS the surface ele-
ments perpendicular to the vortex lines. 

Evaluation of the energy of an isolated vortex  

By using the generalized LONDON equation developed in section 9.6 (rela-
tion 9.32), we have 
  B(r)  0

2   j(r)  0 2(r r0 )û0  (7.64) 

where 2(r  r0) is the two-dimensional DIRAC delta function and r0 is the position 
of the axis situated on the plane containing r and perpendicular to the unit vector û0 
along the vortex axis. Then the energy 1 of a single vortex, neglecting the energy 
of its very small core, is obtained by substituting (7.64) into (7.63), 23 

 
 

1 
1

2 0
0 2(r r0 )ẑ B

V
dr3  0

2 0
B(r0 )  (7.65) 

which is simply the relation (6.27), with B(r0) being precisely the magnetic field at 
the center of the vortex. 

Interaction energy between vortices 

In the presence of two vortices, V1 centered at r1 and V2 centered at r2, the second 
generalized LONDON equation (7.64) becomes 

 B(r)  0 L
2   j(r)  0 2(r r1) û1  0 2(r r2 ) û2  (7.66) 

                                                        
23 There are more accurate calculations than shown here, including corrections that have, 

however, no incidence on the force between vortices. 
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where B(r)  B1(r)  B2(r) is the sum of the magnetic fields associated with the 
two vortices.  

If we insert this expression into (7.63) we have the energy 2 

 
 

2 
0

2 0
B1(r1)  B2(r2 )  B1(r2 )  B2(r1) .  (7.67) 

The first two terms represent the energy of formation of the two isolated vortices, 

 
 

0
2 0

B1(r1)  B2(r1)  2 1  (7.68) 

and the cross-terms a supplementary energy W1-2 of interaction between the vortices. 

 0
2 0

B1(r2 )  B2(r1)  W1 2. (7.69) 

Since the vortices are identical, the field B1(r2) created at r2 by the vortex centered 
at r1 and the field B2(r1) created at r1 by the field centered at r2 depend only on the 
distance r  | r2 – r1| that separates them, and we have 
 B1(r2 )  B2(r1)  B(r).  (7.70) 

Force between vortices 

The force between the vortices, that tends to minimize the interaction energy, is 
repulsive. The force on the vortex V1 due to the presence of V2 is (see Fig. 7.30a), 

 
 
f1 2 

W1 2
r

 0

0

B2
r r1

 0 j2(r1)  (7.71) 

where j2(r1) is the current density associated with the vortex V2 at the core of V1. 
This expression is identical to (7.55) in both direction and magnitude.  

Force acting on a vortex immersed in a uniform current density 

If we make the hypothesis that the force on the vortex V1 immersed in the current 
density j2(r1) of the vortex V2 (7.71) would be the same if the current density were 
from any other source, then a vortex V immersed in a current density J feels the 
force expressed by (7.55). This force, intimately linked to the generalized LONDON 
equation (7.64), is called fLn, the “LONDON force” (Fig. 7.30b). 

In fact this assertion is not easily proved, as the current density density J in which 
the vortex is immersed is not of the same nature as that associated with another 
vortex. Its source is external and if we wish to calculate the force acting on V by 
applying the theorem of virtual work, we must include the potential difference that 
appears and the work that must be provided to maintain it. 24

                                                        
24 D.X. CHEN, E. PARDO & A.SANCHEZ (2010) Physica C 470, 444. 
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Figure 7.30 - Forces acting on the vortices 

(a) The repulsive force between vortices: f1–2 is the repulsive force acting on the vor-
tex V1 (in white) with center at r1 coming from the vortex V2 centered at r2 (in grey). 
The force f1–2 can be expressed as a function of the current density j2(r1) that the vor-
tex V2 produces at r1. (b) Force on a vortex immersed in a current density J: the ex-
pression for the force f1–2 in figure (a) generalizes to any current density, whether it is 
created by another vortex or whether it comes from a transport current of density J. 

A7A.4 - MAGNUS force 

The most spectacular demonstration of a MAGNUS force is when a soccer player 
produces a curved trajectory by giving spin to the ball, making it rotate with respect 
to the mass of air it is moving through. 

The ball is here the core of the vortex, its rotation is that of the whirlwind current 
that surrounds it, and the fluid through which it is moving is the current density J. 
The transverse force is the subject of this appendix. 

Fixed cylinder in a moving fluid 

We consider a fluid, here electrons in uniform translation moving at a speed vJ, in 
which we place a cylinder with its axis perpendicular to the velocity of the fluid’s 
displacement (Fig. 7.31a). 

The lines of current surround the fixed cylinder and are squeezed above and below. 
Fluid mechanics teaches us that when the fluid is irrotational, its velocity tangential 
to the cylinder surface is 25 
 2vJ | sin |.  (7.71) 

In Figure 7.31a the vector of current density is directed to the left and the electrons 
move to the right. 

Velocity of the electrons around the core of an isolated vortex 

The vortex core is considered as a rigid cylinder of radius . The tangential veloci-
ty vt (Fig. 7.31) of the electrons that carry the whirlwind current jt at the surface of 
the cylinder equals (see relation 9.30) 

                                                        
25 E. GUYON, J-P. HULIN & L. PETIT (2015) Physical Hydrodynamics,  

2nd English Edition, OUP, Oxford. 
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 vt 
0

2 m
e.  (7.72) 

The electrons are represented in Figure 7.31b. For a magnetic field pointing out of 
the page, the electrons turn clockwise. 

 
Figure 7.31 

(a) Cylinder in a fluid in uniform translation: the fluid with speed vJ flows around 
the cylinder. The tangential speed at the cylinder is 2vJ |sin  |. (b) The trajectory 
of the electrons associated with the vortex current around a vortex core. 

MAGNUS force 

The total velocity of the electrons just around a vortex core immersed in a current 
density J is the sum of the tangential currents (7.71) and (7.72) which add in the 
upper part and subtract in the lower part. In so far as vt  vJ 

 v2  vt
2  4vt vJ sin .  (7.73) 

Since we are in the steady state, we can apply the BERNOULLI equation. 

 P  1
2

nmv2  Constant. (7.74) 

This signifies that the sum of the pressure on an object and the density of kinetic 
energy of the fluid in its immediate vicinity is the same at any point of its surface 
(n is the density of particles and m their mass). Without even making a calculation, 
it is apparent that as the velocity of the electrons above is greater than it is below, 
the vortex core feels a force directed upwards, i.e. the direction of f  predicted by 
the relation (7.55). 
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Figure 7.32 
MAGNUS force 
The pressure on each surface element of 
the cylinder, is a function of the local 
fluid velocity as given by the BERNOULLI 
equation. dfM is the contribution of the 
surface element dS to the MAGNUS force. 

More precisely, the pressure at a point of the surface is a constant to which is added 
the term, 
  P  2vt vJ sin  (7.75) 

and, in consequence, an element of surface dS   d  experiences, per unit length of 
the vortex, a net force with vertical component 

 dfM  PdSsin  1
2

nm(4 0
2 m

evJ sin2 ) d  (7.76) 

or, integrating from 0 to 2  fM  J 0.   (7.77) 

This is the MAGNUS force, which is found to be equal to f  in direction and in mag-
nitude. More refined analyses have been developed.26 

A7A.5 - Conclusions  

We are confronted, therefore, with three types of force that have been invoked to 
justify the relation (7.55): 
»  the LORENTZ force, where there is serious uncertainty as to its direction; 
»  the LONDON force that results from the interaction energy between pairs of vorti-

ces but whose extension to the interaction between a vortex and an external cur-
rent has not been established definitively; 

»  the MAGNUS force of hydrodynamic origin. It is the subject of numerous discus-
sions to include the distribution of superconducting electrons close to the core, 
the effects of quasi-particles or simply the vortex displacements. 

We can find very thorough discussions of these different contributions in the arti-
cles cited in this appendix, without definitive conclusions having been drawn to 
this day. 

                                                        
26 E.B. SONIN (1997) Phys. Rev. B 55, 485; B. PLAÇAIS et al. (1997)  

Phys. Rev. B 54, 13083. 
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Appendix 7B 
Energy dissipated by a moving vortex 
The BARDEEN-STEPHEN model 

A7B.1 - Construction of the argument 

The reasoning behind the BARDEEN-STEPHEN model can be constructed schemati-
cally from six premises: 
1. The vortex is modelled by a normal core of radius  and resistivity n, surround-

ed by a whirlwind of superconducting electrons of current density j. 
2. Displacement of the vortex implies displacement of the whirlwind current of 

superconducting electrons. 
3. To displace the whirlwind current, an electric field Eext must be present outside 

the core, and this field must be related to j by the first LONDON equation.  
4. To create the electric field Eext outside the core, it is necessary to make a charge 

surface density surf appear at the surface of the core.
5. These surface charges create a field Eint within the core. 
6. Subject to the field Eint, the normal electrons of the core move and dissipate en-

ergy by the JOULE effect, leading to the flux-flow resistivity. 

A7B.2 - Current density 

In the region   r   of the vortex that is considered here, the whirlwind current 
density can be written in cylindrical coordinates,27 

   j (r) 0

2 0
2

1
r

 (7.78) 

and in Cartesian coordinates, 

  jx (r) 0

2 0
2

y
x2  y2 ; jy (r) 0

2 0
2

x
x2  y2 .  (7.79)  

A7B.3 - Exterior electric field 

In order to calculate the electric field Eext necessary for the displacement of the 
whirlwind current of a vortex at velocity v, we consider two points situated at r and 
r  v t where at time t the instantaneous current densities are j(r) and j(r  v t). 
Because of the global translation of the vortex, the current density at the point r at 
time t  t is equal to what it was at time t at the point r  v t. Hence the change in 
the current at point r between times t and t  t is 

 j(r) between t  and t t  j(r v t) j(r) at time t .  (7.80) 

                                                        
27 This relation will be demonstrated in section 9.5.4 (relation 9.31). 
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Close to a vortex oriented along the z axis and moving along the x axis with veloci-
ty vx, the changes in the components jxv and jyv at the point r between t and t  t 
are then 

 jxv 
jx
x

vx t and jy
v 

jy

x
vx t  (7.81) 

which, from the first LONDON equation 

 
 
Eext  0

2 j
t

 (7.82) 

requires that components of Eext satisfy 

 Ex
ext  0

2 jxv

x
vx and Ey

ext  0
2 jy

v

x
vx .  (7.83) 

From the expression (7.78), this can be rewritten 

 Ex
ext  vx

0
2

2xy
(x2  y2 )2 and Ey

ext  vx
0

2
y2 x2

(x2  y2 )2  (7.84) 

or, in vector notation, for a point M situated at r, 

 Eext  vx
0

2
2(ŷ ur )ur ŷ

r2     (7.85) 

where  is the unit vector in the y direction, and ur the unit vector in the direction 
from the origin to M. 

A7B.4 - Charge density at the core surface 

It so happens that the expression (7.85) is formally identical to that of an electric 
field 

 
 
Eext  R2 0

2 0

2(ŷ ur )ur ŷ
r2  (7.86) 

created outside an infinite cylinder along the z axis and of radius R, with surface 
charge 28 
 surf  0 cos  (7.87) 

where  is the azimuthal angle (with respect to the y axis). This leads us to consider 
the vortex core as a cylinder of radius R   with surface charge surf  0 cos  
where 

 0  2 0vx
0

2 2  (7.88) 

                                                        
28 C. GARING (1995) Milieux diélectriques, Ellipse, p. 34, 
 http://faculty.uml.edu/cbaird/all_homework_solutions/Jackson_4_8_Homework_Solution.pdf 



7 - FIELDS AND CURRENTS IN TYPE II SUPERCONDUCTORS 187 

Figure 7.33 
Electric field lines created by a 
cylindrical bar of radius R and 

carrying surface charges surf  0 cos  
The external electric field distribution is simi-

lar to that created nearby a moving vortex. 
The electric field is uniform in the interior 
of the cylinder with value Eint   0

 / 2 0 . 
Note that the electric field is perpendicular 

to the displacement velocity. 

A7B.5 - Internal field 

Since the electric field created in the interior of a cylinder carrying a surface charge 
density surf  0 cos  is uniform, 

 E int  0
2 0

.  (7.89) 

BARDEEN and STEPHEN wrote, by simple transposition, that the electric field inside 
the vortex core was 

 E int  vx
0

2 2 .  (7.90) 

A7B.6 - Dissipated power and flux-flow resistivity 

Since the power dissipated per unit volume of the vortex core of resistivity n (the 
core is in the normal state), where there is the electric field Eint, is (Eint)2 / 

n, the 
power dissipated per unit length of the vortex can be written as 

 p  2 (E int )2

n
 2 1

n
vx

0

2 2

2


vx

2

n

0
2

4 2  (7.91) 

or, per unit volume of the superconductor containing nv vortices per unit area 

 P  nvp  nv
vx

2

n

0
2

4 2 .  (7.92) 

Identifying this result to the relation (7.12) derived in a model of viscous friction 
we find 

  2P
nv vx

2  1
n

0
2

2 2
 (7.93) 
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where we have introduced an extra factor of 2 that BARDEEN and STEPHEN justified 
by showing that some of the electrons, whose trajectories are modified by the vor-
tex motion, come very close to the core without actually penetrating and then they 
too become resistive. 4 Using the relation (6.28) between Hc2 and , we obtain the 
expression (7.18) for the resistive coefficient . 

  0

n
0Hc2.  (7.94) 



Chapter 8 
 

COOPER PAIRS 
PRINCIPAL RESULTS OF BCS THEORY 

The microscopic mechanism at the origin of the superconductivity emerged in two 
stages. The first was the proof, by Leon COOPER, that two electrons at the FERMI 
level with an attractive interaction form a bound state and constitute a pair, now 
called the “COOPER pair.” The second stage was the application by BARDEEN, 
COOPER and SCHRIEFFER of the techniques of the many-body problem to treat the 
system consisting of N electrons which form COOPER pairs condensed in a boson-
like coherent state. This theory, called “BCS” to recall the names of its authors, 
was published in an historic article 1 whose results are in agreement with the prin-
cipal properties of superconductors such as the MEISSNER effect, the critical field, 
the critical current density, electromagnetic absorption, the nature of the coherence 
length introduced by the non-local PIPPARD equations… Exploitation of this theo-
ry, where superconductivity appears as a BOSE-like condensation of COOPER pairs, 
later lead to the discovery of the JOSEPHSON effects and justified the phenomeno-
logical theory of GINZBURG and LANDAU. 

After giving a detailed treatment of the formation of a COOPER pair, the elements 
of BCS theory will be presented in a qualitative way. 

8.1 - Free electron gas 

8.1.1 - Free electron gas at 0 K 

The metallic state is characterized by the presence in the material of mobile elec-
trons called “conduction electrons.” To a first approximation we consider that each 
of them moves freely in the uniform average potential created by the ions and the  
other electrons of the metal. They are treated as a gas of N independent electrons 
inside a rectangular box of volume V (of dimensions L1, L2, L3) that obey FERMI-
DIRAC statistics. 

                                                        
1 J. BARDEEN, L.N. COOPER & J.R. SCHRIEFFER (1957) Phys. Rev. 108, 1175. 
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Without interactions, their energy is purely kinetic and the Hamiltonian of each 
electron is 

 Ĥ0 
2

2m
2.  (8.1) 

The energy levels k are solutions of the eigenvalue equation  

  Ĥ0 k  k k  (8.2) 

where, adopting the periodic boundary conditions of BORN-VON KARMAN 2 

 
 

k 
2

2m
(k1

2  k2
2  k3

2 ) with ki 
2
Li

ni .  (8.3) 

The ni are positive or negative integers and the ki (i  1, 2, 3) appear as the compo-
nents of a wave vector k. The corresponding wave functions k are plane waves, 

 
 

k (r)  1
V

eik r with k 
2

2m
k2.  (8.4) 

The normalization factor 1/ V is chosen so that the integral of the probability 
density k

*(r) k(r) over the volume V of the box equals unity. 

To define the quantum state of the electron completely, we must add its spin. Each 
quantum state of a particle is then represented by a point of coordinates k1, k2, k3 in 
the wave vector space (reciprocal space), to which is associated a component of 
spin,  or . 

Note - when such precision is needed, the wave function of an electron of spin  
occupying the quantum state k will be denoted by  k (r).  

Density of states 

As the separation of two adjacent nodes is very small (2  / Li along each axis), the 
quantum states can be considered as forming a continuum both in k and in energy . 
Every state “occupies” in k-space a volume 8 3/V so that the number dNstate of 
quantum states per spin component whose wave vector has a magnitude between k 
and k  dk is 

 dNstate 
V

8 3 4 k2dk  V G(k)dk with G(k)  1
2 2 k2

 
(8.5) 

where G(k) is the density of states in k per unit volume and per spin state. The den-
sity of states in energy G( ), always per unit volume and per spin state, is such that 
the number of quantum states between  and (   d ) is 

 dNstate  V G( )d .  (8.6)

                                                        
2  (x  n1L1 , y  n2L2, z  n3L3)   (x, y, z); n1, n2, n3 are arbitrary integers. 
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Using the dispersion relation 
  

k 
2k2

2m
 and conservation of the number of states, 

 dNstate  V G( )d  V G(k)dk  (8.7) 

giving G( )  1
4 2

2m
2

3 2
.  (8.8) 

Remark -  Note that we have defined G(k) and G( ) as the electronic density of states 
per spin state and per unit volume. They must be distinguished from g(k) and g( ), 
which are densities of states of electrons of the two spin states. Obviously we have 
 g(k)  2G(k)    and    g( )  2G( ). (8.9) 

FERMI level 

At 0 K, the N electrons populate the lowest energy levels. The occupied states of 
k space lie inside a sphere, called the “FERMI sphere” (Fig. 8.1) of radius kF, the 
“FERMI wave vector”. The FERMI energy F, the highest occupied energy at 0 K 
(also called the “FERMI  level”) is related to kF by 

 
 

F 
2

2m
kF

2  (8.10) 

and since the N electrons fill all the levels up to kF, we have 

 N  2V G(k)dk0
kF  V

2
kF

3

3
. (8.11) 

 
Figure 8.1 - FERMI sphere 

The energy levels are attached to points of reciprocal space that form a lattice with 
parameters 2 /Li. Each point accommodates two opposite spins. The FERMI sphere 
bounds the volume occupied by the electrons at zero temperature. It is of radius kF. 
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The wave vector, the energy and the speed of electrons at the FERMI level are there-
fore given by 

 kF  3 2N
V

1/3

; F 
2

2m
3 2N

V

2/3

; vF 
kF
m

.  (8.12) 

These parameters depend only on the density of free electrons n  N / V. In metals 
we have typically F  5-10 eV, kF  1.25 1010 m 1 and vF  106 m s 1. 

Expressions (8.8) and (8.12) lead to a density of states at the FERMI level per unit 
volume and for one spin state 

 G( F )  3n
4 F

.  (8.13) 

Effects of temperature 

Qualitatively, the temperature has the effect of exciting particles by giving them an 
energy of order kBT, where kB  0.86 10 4 eV K 1 is the BOLTZMANN constant; this 
represents an energy of 25 meV at 300 K or 2.5 meV at 30 K. As these energies are 
considerably less than the FERMI energy and because of the PAULI principle, only 
electrons located in a slice of energy kBT wide below the FERMI level can be excit-
ed (Fig. 8.2b) and promoted to an empty level. Each of the 2G( F) kBT electrons in 
this layer (the factor 2 taking into account the spin) acquires an average energy of 
order kBT, leading to an increase in the energy per unit volume 

 u 2G( F )kB
2T 2  (8.14) 

and an electronic specific heat per unit volume (of the normal state), 

 Cn
el  ( u )

T
4G( F )kB

2T  (8.15) 

linear in T, as already mentioned in section 4.4.2, and proportional to the density of 
states at the FERMI level. More rigorously, the energy distribution of the electrons 
at temperature T is the product of the density of states 2G( ) with the FERMI  
function, 

 

 

f (T , )  1

1 e
F

kBT  

.  (8.16) 

The number of electrons (of the two spin states and per unit volume) of energy  
between  and   d  is written 
 dN ( )  2 f ( )G( )d .  (8.17) 

The total energy of the free electron gas per unit volume is 

 u  2 f ( )G( )d0 .  (8.18) 
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Differentiating with respect to T, the expression for the electronic specific heat  
becomes 

 Cn
el  2 2

3
G( F )kB

2T  (8.19) 

that differs little from (8.15). 

 
Figure 8.2 - The electronic distribution at zero (a) and non-zero (b) temperatures 

The electronic density is the product of the density of states 2G(  ) and the FERMI 
function f (T,   ). At zero temperature, all states of energy less than the FERMI energy 

F are occupied by electrons and the higher energy states are empty. At non-zero 
temperatures, f (T,   ) varies around the FERMI level from 1 to 0 over an energy  
interval of a few kBT, leading to the electronic distribution shaded in grey. 

8.2 - Interacting electron gas 

8.2.1 - Wave functions of two independent particles 

The kinetic energy of a system of two independent particles is the sum of the  
kinetic energy of each particle. In the absence of an interaction, its Hamiltonian is 
written 

 
 
Ĥ0(r1,r2 ) 

2

2m 1
2 2

2m 2
2  (8.20) 

where  1
2

 and  2
2  are the Laplacians with respect to the variables r1 and r2  

respectively. The eigenvalue equation can be resolved by separation of variables 
and the eigenfunctions (r1,r2) of two independent particles are products of the 
eigenfunctions (8.4) of the single particle system 

 
 

kmkn
(r1,r2 )  km

(r1) kn
(r2 )  1

V
eikm r1 eikn r2 . (8.21) 

This wave function represents the probability amplitude of finding particle 1 at r1 
in the state km and particle 2 at r2 in the state kn. Because the electrons are indis-
tinguishable and they are fermions, the wave function must be anti-symmetric, i.e. 
it must change sign if we permute the electrons 

 
 kmkn

AS (r1,r2 )  kmkn

AS (r2,r1).  (8.22) 

This can be satisfied by writing the wave function as a SLATER determinant 
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 kmkn

AS (r1,r2 )  1
2

km
(r1) km

(r2 )

kn
(r1) kn

(r2 )
 (8.23) 

which is interpreted as the probability amplitude of finding one electron at r1 and 
the other at r2, one in the state km and the other in the state kn

 
, without any other 

precision (implicitly, the states kn and km contain the spin indices). This way of 
writing the wave function appears a little clumsy and will mostly be unnecessary 
here. The anti-symmetrized function (8.23) showing explicitly the orbital and spin 
variables will be reintroduced only when strictly necessary. 

The eigenvalues associated with the eigenfunctions kmkn (r1,r2) are the sums of the 
kinetic energies of the individual independent particles, or  

 kmkn


2km
2

2m


2kn
2

2m
 km

 kn
.  (8.24) 

In the basis of functions kmkn (r1,r2), the Hamiltonian (8.20) is diagonal and the 
diagonal elements are the eigenvalues  kmkn

. 

8.2.2 - Interaction potential 

When the particles interact with each other, we must add an interaction 
term  V̂(r1,r2 )  to the two-particle Hamiltonian which becomes 

 
 
Ĥ0(r1,r2 ) 

2

2m 1
2 2

2m 2
2  V̂(r1,r2 ).  (8.25) 

In this case it is no longer possible to proceed by separating variables. The search 
for new energy levels requires diagonalization of the matrix  that, in the basis 

kmkn (r1,r2) of eigenvectors of the non-interacting system of two particles, has in 
addition to the diagonal terms we have just seen, non-diagonal terms that are the 
matrix elements 

 
  

p,s V̂ m,n  1
V 2 e ikp r1e iks r2 V r2 r1 eikm r1 eikn r2d3r1d3r2. (8.26) 

Integration over r1 and r2 extends over the volume of the box. This matrix element 
takes the value, in a unit volume (see Ap. 8), 

 
 

p,s V̂ m,n  V(q) if q  ks kn  km kp
0 otherwise

 (8.27) 

with  V(q)  V(r)e iq rd3r.  (8.28) 

The process of interaction can be interpreted as follows (Fig. 8.3): 
»  two electrons are initially in states  m  and  n  (momenta km and kn); 
»  during the interaction they exchange a momentum q with probability amplitude 

V(q); 
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»  after this exchange, the electrons are to be found in states  p    m  q  and 
 s    n  q  with momenta (km  q) and (kn  q). 

Because this exchange must be without any change in total momentum, only terms 
satisfying the condition 
 km  kn  kp  ks  (8.29) 

are non-zero. 

H H

HH

 
Figure 8.3 - Diagrammatic presentation of the interaction between two particles 

In the initial state, the particles are in states  m  and  n . By exchanging 
momentum q, they are scattered into the states  m  q  and  n  q . 

8.2.3 - Interaction mediated by phonons 

Starting with experiments that had shown (although this is not verified in every 
system) that two isotopes of the same element do not exhibit the same critical tem-
perature Tc for the transition between the normal and superconducting phases, but 
follow an empirical law 

 
 
Tc

iso  Constant
M iso

 (8.30) 

where M
 iso is the isotope mass, FRÖHLICH 3 proposed the idea that the lattice vibra-

tions (phonons), whose frequency is inversely proportional to the square root of 
M iso, play a dominant role in the mechanism of superconductivity. Following this 
line of thought, BARDEEN, COOPER and SCHRIEFFER (BCS) considered that the 
attractive electron-electron interaction, responsible for superconductivity, is due to 
the exchange of phonons. The process is as follows: 
»  an electron of initial momentum km “excites” a phonon of wave vector q trans-

ferring a momentum q; its final momentum is (km – q); 
»  the created phonon interacts with an electron of momentum kn that “absorbs” it, 

acquiring a momentum (kn  q). 

The excitation and absorption of the phonon are caused by the electrostatic interac-
tion between electrons and crystal ions. During its motion, the first electron (of 

                                                        
3 H. FRÖHLICH (1936) Elektronentheorie der Metalle, Springer. 
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negative charge) displaces crystal ions (of positive charge) and generates the pho-
non. The moving ions will interact with the second electron by giving up their own 
movement to it. A detailed analysis reveals that to be non-vanishing, the non-
diagonal elements of the interaction matrix should satisfy two conditions: 

»  The initial and final states must be states of opposite wave vectors and opposite 
spins. They are therefore of the form 

  Vk’k  k’ , k’ V̂ k , k .  (8.31) 

Such states   k  , k are called “pair states.” 

»  As the particles exchanged during the interaction process are phonons, the only 
transitions possible are between pair states involving energy transfers less than 
the maximum phonon energy, which is order D (the DEBYE energy  10 to 
20 meV). As a consequence the only “pair states” that can be involved in the 
transitions are those constructed out of wave vectors of wavelength k whose  
energies k lie in a band of energies of order D around the FERMI energy F. 

The simple BCS approximation then considers that the non-zero matrix elements 
that describe the interaction are all equal with 

 
 
Vk’k  V if F D  ( k  and k’)  F  D

0 otherwise
 (8.32) 

 
Figure 8.4 - Graph of the interaction at the origin of BCS superconductivity 

Initially, two electrons occupy the pair state  k  
,
 k . At time t, the electron of 

wave vector k  creates a phonon of wave vector q and acquires the wave vector 
k’   k   q. At a later time, the electron of wave vector  k  absorbs the phonon 
and its wave vector becomes  k’    k   q . The net effect is that the electron 
pair has been scattered from the state  k  

,
 k  into the state  k’  

,
 k’ . 

To these conditions related to the nature and the form of the interaction potential 
we must add a condition to respect the PAULI principle: a transition from an initial 
state  k  , k  towards a final state  k’  , k’  can only occur if the initial state is 
occupied (electrons present in both  k  and  k ) and the final state is empty 
(electrons in neither  k’  nor  k’ ). 
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8.3 - The reference system 

Before beginning a general discussion of the stability of COOPER pairs, we will 
examine the effect of a negative potential on a system of a single particle. In the 
rest of this chapter we will often refer to the results of this “reference system”. 

8.3.1 - One particle system 

 System of degenerate states 

Consider a system of four states  1 ,  2 ,  3 ,  4  forming a basis in which the Ham-
iltonian 0 is diagonal, with four identical eigenvalues . We then add an interac-
tion potential V̂  that has matrix elements in this basis that are all identical and 
negative, with value  V. 
 j V̂ i  Vji  V. (8.33) 

Finding the new energy levels, i.e. the new eigenvalues of the Hamiltonian, in-
volves solving the system of equations 

     

V E V V V
V V E V V
V V V E V
V V V V E

c1
c2
c3
c4



0
0
0
0

.  (8.34) 

The solutions are the values of E making the determinant vanish or,  

 (E )3 4V ( E)  0  (8.35) 

which leads to three levels of energy equal to the initial energy and to a fourth  
energy level E  that is lower, 
 E  E  E  ; E  4V.  (8.36) 

The eigenvector  associated with this last level is the symmetric linear combina-
tion of the states  1 ,  2 ,  3  and  4 ,

 
 

 1
4

1  2  3  4 .  (8.37) 

In the language of quantum mechanics  is a stationary state, which means that: 
»  if the particle is in this state at time t  0 it will stay in this state indefinitely, with 

quantum phase factor e
iE t

;  

»  if at time t  0, the particle is, for example, in the state  1  which is not an eigen-
vector of the complete Hamiltonian, at later times it will be found with non-zero 
probabilities in the other states  2 ,  3  and  4 . The evolution of the system is 
given by the time-dependent equation 
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 i dci(t)
dt

 Vij
j

c j (t)   (8.38) 

where ci is the probability amplitude of finding the particle in the state  i . 

We say that a particle in the state   is delocalized over the states  1 ,  2 ,  3  and 
 4 In addition to corresponding to the probability of finding the particle in each  
of the states  i  this delocalization has a dynamic character since it can be seen as  
a repeated jumping between the states  1 ,  2 ,  3  and  4 with a frequency of  
order V/ . 

This “dynamical” delocalization is a generalization from the two-state system (the 
molecule NH3, for example) where in the bound state there is an oscillation  
between two configurations (the nitrogen above or below the plane of the hydro-
gens) by the effect of a non-diagonal matrix element.4 This kind of “generalized 
oscillation” is among all four states  i  here. 

Generalization to N degenerate states 

The result obtained for the system with 4 states can be generalized to N states: the 
Hamiltonian matrix formed by N diagonal terms equal to (   V) and non-diagonal 
terms all equal to  V, has one bound state  of energy  
 E  NV  (8.39) 

while the energy of all the other states stays as , 

 E  E    Ev  .  (8.40) 

H
 

Figure 8.5 - Bound state in an initially degenerate system 
An interaction that adds a term – V to each element of the Hamiltonian 
matrix leads to the emergence of a strongly bound state. The binding 
energy is proportional to the dimension N of the matrix. 

                                                        
4 R. FEYNMAN, R. B. LEIGHTON, M. SANDS (1966) The Feynman Lectures in Physics, 

Vol. III: Quantum Mechanics, Addison-Wesley, New York. The new Millenium edition 
is available on-line at http://www.feynmanlectures.caltech.edu. 
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The decrease in energy  NV, also called the “binding energy,” becomes larger and 
larger as the number of states N increases. This means that in a system with a very 
large number of states, even a very weak attractive potential can lead to a state with 
energy significantly lower than in the non-interacting system. 

As in four dimensions (the expression 8.37), the eigenvector associated with the 
state of lowest energy is the symmetric combination of all the states  i , 

 
 

 1
N

1  2 … i … N .  (8.41) 

Thus the more states over which the bound state is delocalized, the lower is its en-
ergy and the stronger the binding. 

System with non-degenerate states 

We now consider the case where eigenvectors of the non-interacting system  1 , 
 2 ,  3  and  4  correspond to different energies 1, 2, 3 and 4. Introduction of the 
potential V̂  leads to the eigenvalue equation 

  

1 V E V V V
V 2 V E V V
V V 3 V E V
V V V 4 V E

c1
c2
c3
c4



0
0
0
0

 (8.42) 

i.e., to four equations with four unknowns 
 V(c1  c2  c3  c4 )  ci( i E) ; i [1,4]  (8.43) 

or, equivalently, to the four relations 

 

ci
V


c1  c2  c3  c4

i E
; i [1,4].  (8.44) 

Summing each of the two sides of (8.44) over the index “i” we then obtain a gen-
eral relation, 

 
1
V
 1

i Ei1

4
.  (8.45) 

If 1  2  3  4   we recover the solution (8.39) E     NV. 

When the energies i differ ( 1  2  3  4), the equation (8.42) always has one, 
and only one, energy lower than the lowest of the original energies as appears 
clearly by examination of the drawing in Figure 8.6. It is the only solution for 
which all the ci are positive. 

The eigenvector  associated with the eigenvalue E  can be written in the basis of 
non-perturbed eigenvector as 
    c1

 1   c2
 2   c3

 3   c4
 4  (8.46) 
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with ci 
V c jj1

4

i E
.  (8.47) 

 
Figure 8.6 - Bound state in an initially non-degenerate state 

An interaction that adds a term – V to each element of an initially 
non-degenerate Hamiltonian matrix leads to the emergence of one, 
and only one, energy level E  below the lowest non-perturbed level. 

The ci, components of the “bound” state  of the eigenvectors of the non-
interacting Hamiltonian, satisfy the relations c1  c2  c3  c4 (Fig. 8.7). The states 
of lowest energy therefore appear with a greater weight in the projection of  . 
This means that in the dynamic picture described previously, according to which 
the electron jumps between the stationary states of the non-perturbed system with 
occupation probabilities cj

2, the particle has a higher probability to be found in the 
states of lowest energy. 

 

Figure 8.7 
Weight of the initial states in the bound state 
The respective weights of coefficients ci of  
the bound state   projected on the basis  
of unperturbed states  i , when the initial  
state is non-degenerate. 

Generalization to N non-degenerate states 

The result found in the previous paragraph for a four-state system can be general-
ized to N states that initially form a quasi-continuum of energy levels. The interac-
tion  V causes the appearance of one state   at an energy below the lowest value 
of the quasi-continuum (Fig. 8.8). 

In the dynamic picture, exploration of the states by the system privileges those that 
are lowest in the quasi-continuum of non-interacting states (Fig. 8.8). 
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H  
Figure 8.8 - System of N levels forming a quasi-continuum 

With the interaction  Vone, and only one, state emerges 
with energy below the lowest value of the continuum. 

8.3.2 - Systems of pairs 

We now turn to a system consisting of two electrons that, without interactions, can 
occupy, taking into account the exclusion principle, four one-particle states, two of 
energy  and two of energy ’ with   ’ (the energy of each state is shown in 
brackets): 
    1  k ( ) ; 2  k ( ) ; 3  k’ ( ’) ; 4  k’ ( ’)  (8.48) 

The two-electron states of this system consist of (Fig. 8.9): 
»  two pair states which satisfy the conditions of opposite wave vectors and opposite 

spins 
 1,2  k , k (2 ) and 3,4  k’ , k’ (2 ’);  (8.49) 

»  four states that are not pair states, as they do not satisfy these conditions 

 
1,3  k ,k’ (  ’) ; 1,4  k , k’ (  ’)
2,3  k ,k’ (  ’) ; 2,4  k , k’ (  ’)

 (8.50) 

(Pair states with two identical single particle states are excluded as they are incom-
patible with the PAULI principle). 

Figure 8.9
Energies of pair states of

non-interacting electrons
The energy of a pair state is the sum

of the energies of the one-electron
states constituting the pair.

H

H

H H
H H
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We now introduce an interaction potential V̂  whose only non-zero matrix elements 
(which are all equal) are those coupling two pair states of type  k  , k  

  1,2 V̂ 1,2  1,2 V̂ 3,4  3,4 V̂ 1,2  3,4 V̂ 3,4  V. (8.51) 

In the basis ( 1,3  ;  1,4  ;  2,3  ;  2,4  ;  1,2  ;  3,4 ) (note the order of the vectors) 
the Hamiltonian matrix becomes 

 Ĥ 

 ’ 0 0 0 0 0
0  ’ 0 0 0 0
0 0  ’ 0 0 0
0 0 0  ’ 0 0
0 0 0 0 2 V V
0 0 0 0 V 2 ’ V

.  (8.52) 

When we diagonalize it in order to find the energy levels of the two-particle sys-
tem, the first block diagonal (of size 4 × 4) which corresponds to two-electron states 
that are not pair states is unchanged. The second block is the (2 × 2) subspace of 
pair states with eigenvalues 

 E  (  ’) V  ( ’)2  V2 .  (8.53) 

The associated eigenvectors are linear combinations of the states  1,2  and  3,4 . 
The minus sign ( ) corresponds to the bonding state of lower energy and the plus 
sign () to an anti-bonding state of higher energy. 

H

H

H H
H H

Figure 8.10 
Interacting system containing two pair states  
From the pair states emerge a bonding state  
of energy E  and an anti-bonding state E  .  
The states that are not pair states are unchanged. 

The generalization to an increasing number of initial one-electron states is immedi-
ate. For instance, if we begin with 12 individual states of type  k ,  k’ ,  k” we can 
construct 66 two-particle states of which only 6 are pair states. 
  k , k ; k’ , k’ ; k” , k” ; k , k ; k’ , k’ ; k” , k” . 

If we add an interaction with non-diagonal elements  V only between pair states, 
the Hamiltonian becomes the direct sum of a (60  60) diagonal block and a (6  6) 
block in the subspace of pair states 
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Ĥ 

2 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0 0

0 0 2 0 0 0 0 0 0
0 0 0 2 V V V V V V
0 0 0 V 2 V V V V V
0 0 0 V V 2 ’ V V V V
0 0 0 V V V 2 ’ V V V
0 0 0 V V V V 2 ” V V
0 0 0 V V V V V 2 ” V

.
 

(8.54)
 

This subspace of pair states, whose Hamiltonian matrix resembles exactly that of 
(8.42), returns to the results of the previous section. By simple transposition of the 
expression (8.45), we deduce the relation 
 

 

1
V
 1

2 i Ei
 (8.55) 

that makes appear a bound state   of energy E   as a linear combination of the pair 
states 

 
 

 1
6

c1 k , k  c2 k , k  c3 k’ , k’
c4 k’ , k’  c5 k” , k”  c6 k” , k”

 (8.56) 

whose coefficients satisfy ci 
V

2 i E
c j

j
.  (8.57) 

As in the previous example, a pair of electrons placed in the state   is delocalized 
over the six available pair states of type  k  ,  k  with occupation probabilities  ci

  2. 

8.4 - COOPER pairs 

8.4.1 - The accessible pair states 

In a metal at 0 K, the conduction electrons are distributed on the lowest energy 
states, up to the FERMI level of energy F. Above F all the levels are empty, below 
all are filled. In this ideal situation, let us consider two electrons at the FERMI level, 
coupled by the BCS interaction (relation 8.32). Available to them are pair states of 
the form  k  ,  k  that are unoccupied, i.e. situated above the FERMI  level. Since, 
as indicated in section 8.2.3, scattering of a COOPER pair from one pair state 
 k  ,  k  to another  k’  ,  k’  cannot be accompanied by an energy transfer great-
er than the DEBYE energy, the only pair states accessible to the COOPER pair are 
those whose one-particle energy states satisfy F  k  F  D, leading us to keep 
only pair states whose wave vectors k are in the range 

 
 

2kF
2

2m


2k2

2m


2kF
2

2m
 D  (8.58) 
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i.e. those in the band such that 

 
 
kF  k  kc with 

2kc
2

2m


2kF
2

2m
 D  (8.59) 

or, since D

2kF
2

2m
,
 

 D

2kF
m

(kc kF ).  (8.60) 

 

Figure 8.11 
Pair states accessible to delocalization 
of a COOPER pair 
Measuring the initial energy k from the 
FERMI level ( k  k  F), the accessible 
pair states are those whose single  
particle energy levels lie in the interval: 
0  k  D kF  k  kc  
with D  ( 2 kF/m) (kc  kF). 

8.4.2 - Redefinition of the zero of energy 

As the physics of superconductivity is concentrated around the immediate vicinity 
of the FERMI level, it turns out to be much more practical to take the FERMI energy 
as the zero of energies and to rename k the kinetic energy of a free electron in the 
state  k . We have therefore 5 

 
 

k  k F 
2

2m
(k2 kF

2 )  (8.61) 

and, in so far as k is very close to kF 

 
 

k
2kF

m
(k kF ).  (8.62) 

8.4.3 - Bound state of the COOPER pair at 0 K 

The problem can be treated by simple transposition of the “reference system”  
example. The expression (8.55) relating the energy E  of the bound state and the 
matrix element  V becomes 

 
  

1
V
 1

2 k EkF

kC

 (8.63) 

and as there is a continuum of available pair states, it can be transformed into the 
integral 

                                                        
5  (regular font)  energy measured from the FERMI level.  

 (italics)  correlation length (see Chap. 3). 
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 1
V
 G(k) dk

2 (k) EkF

kc

 (8.64) 

where G(k) is the density of states per unit volume (  V is the matrix element cor-
responding to a unit volume). E  is the energy of the bound state measured from the 
FERMI level taken as zero. E  is therefore negative. 

By a change of variables k   (see relation 8.7) and using the fact that the integra-
tion is over a very small region near the FERMI level, within which the density of 
states is almost constant with the value G( F), 

 1
V
 G( F ) d

2 E0

D

 (8.65) 

or, after integration, 

 1
V
 1

2
G( F ) ln(2 E ) 0

D  1
2

G( F ) ln 1 2 D
E

.  (8.66) 

As experiments show that superconductivity of BCS type disappears beyond a few 
kelvins, the energy E  stays very small compared to the DEBYE energy that is sev-
eral hundreds of degrees. We can then neglect the constant 1 compared to 2 D

 / E  
and the expression (8.66) reduces to 

 1
V

1
2

G( F ) ln 2 D
E

 (8.67) 

and finally we have 

 E 2 D  e
2

VG( F ) .  (8.68) 

The binding energy Eb defined as 
 Eb     E  . (8.69) 

is the lowering of the the two electron energy by their association to form a 
COOPER pair delocalized over the available pair states. To have a definite idea of 
scales, typical values of the energies involved are: F  5 eV; D  20 meV; 
G( F)V  0.25; Eb  0.013 meV. 

We can check that, as was assumed to find (8.68), 
 Eb    D    F . (8.70) 

Remark - V and G( F) have been defined per unit volume. As shown in Appendix 8, 
any other choice would have lead to the same result since for a volume V ,  
V and G( F) would be replaced by V/V  and V G( F) respectively, leaving the bind-
ing energy Eb of the COOPER pair unchanged. 
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8.4.4 - Wave function, occupation probability 

Similarly to (8.46), the quantum state of lowest energy can be projected onto the 
basis of pair states according to 
 

 
 ck i

k i , k i
k i

 (8.71) 

and, exactly as in relation (8.57) this gives, 

 
  
ck i

 1
2 i  Eb

V ck j
kF

kc

 K
2 i  Eb

 (8.72) 

where K is a normalization constant such that 

 
 

ck j

2

kF

kc
 1.  (8.73) 

In the state  , the occupation probability of an electron pair in the pair 
state  km  , km  is equal to ckm

2. Its variation as a function of energy  and wave 
vector k is shown in Figure 8.12. 

Figure 8.12 
Profile of occupation probabilities of a 
COOPER pair over the pair states k  ,  k  
It takes a maximum at the FERMI level  
and decreases rapidly to 1/9 of its  
initial value at kb.  
The total probability for a COOPER pair  
to be in one of the pair states  
in the range kF  k  kb is 2/3. 

This occupation probability decreases rapidly starting from kF where it takes the 
value (K / Eb)2. At the wave vector kb defined by analogy to kc by 

 
2kF

2

2m
 Eb 

2kb
2

2m
 (8.74) 

it has decreased to 1/9 of this value. Integration of ckj
2 between 0 and Eb shows that 

the occupation probability of the COOPER pair over pair states in the band k  
between kF and kb is equal to  and, as a consequence, the pair states situated  
between kb and kc, while available, are infrequently “visited”. 
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This result comes from a compromise between two terms with opposite effects: 
»  the gain in the delocalization energy; the higher the number of pair states visited, 

the stronger this gain will be; 
»  the energy cost in exploring levels that by their large values of k make a greater 

contribution to the kinetic energy. 

It turns out to be energetically favorable to explore fewer states, avoiding those that 
are most costly in kinetic energy. 

8.4.5 - Spatial extent of a COOPER pair 

It is well known in quantum mechanics (the uncertainty principle) that when a par-
ticle is described by a wave packet (a superposition of plane waves  (1/ V )ei kr  
whose wave vectors extend over a width k) the occupation probability of the parti-
cle extends over a distance r such that 

 r 1
k

.  (8.75) 

In the same way, when a COOPER pair is described as a superposition of pair 
states  k ,  k , i.e. by a superposition of plane waves (1/V )eik (r1  r2) whose wave 
vectors extend over a width k, the mean distance r between the two particles 
forming the pair is given by the relation (8.75). As k is close to (kb  kF), we can 
relate r to Eb by the following steps (see the approximation giving (8.62) from 
(8.61)): first 

 Eb

2kF
m

(kb kF ).  (8.76) 

Introducing the FERMI velocity vF, this then gives 

 
  

k  m
2kF

Eb 
Eb
vF

 (8.77) 

and finally the average distance between electrons in a COOPER pair 

 r  1
k

vF
Eb

.  (8.78) 

8.5 - Elements of BCS theory 

From now on we give the results of the BCS calculation without explicit derivation, but 
referring to the formation of COOPER pairs at a qualitative level. 

8.5.1 - Collection of COOPER pairs 

In the previous section, it was shown that at 0 K, two electrons initially situated at 
the FERMI level see their energy lowered by joining to form a COOPER pair which 
is delocalized over, and jumps among, the pair states  k  ,  k available between 
kF and kc, with an occupation probability dominated by those between kF and kb. 
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By extension, there is no reason to stop at two electrons, and the energy of the sys-
tem will be further diminished if we take two other electrons at the FERMI level to 
form a second COOPER pair, then two more to form a third… 

We see then, with the successive formation of COOPER pairs, three phenomena 
would appear: 
»  the energy of the system is lowered as each new COOPER pair “emerges” ; 
»  the pair states  k  ,  k situated at the FERMI level or slightly below, whose elec-

trons are taken out in pairs to form COOPER pairs which explore higher levels, are 
now partially empty. They can therefore be added to the pair states available for 
the delocalization of the COOPER pairs, that now will have access to states of  
energy less than the FERMI level; 

»  the COOPER pairs, as they are more and more numerous, start to “disturb” one 
another. The pair states are more and more filled and therefore less and less 
available as final states in the scattering from one pair state  k  ,  k  to anoth-
er  k’  ,  k’ . In the language of the reference system, this reduces the dimen-
sion of the matrix and as a consequence, the binding energy. There are more 
COOPER pairs but each pair can find fewer states to jump between, leading to a 
phenomenon of saturation. 

8.5.2 - Ground state 

This qualitative reasoning shows that we cannot consider COOPER pairs separately, 
but must treat all the electrons globally. The progressive addition of COOPER pairs 
is artificial, because they appear simultaneously, forming a BOSE-like coherent 
state in which all of them are described by a unique wave function with a unique 
phase . BCS formalized this aspect using many-body techniques. We summarize 
their results: 
»  The lowering of the energy of the system is due to the attractive potential  

between electrons of reversed wave vector and opposite spin. It leads to a “delo-
calization” of the COOPER pairs over the pair states  k  ,  k  situated near the 
FERMI level. 

»  The occupation probabilities of a state  k  ,  k  by a COOPER pair at 0 K is given 
by a function vk

2 and its complement, the probability of non-occupation, by 
uk

2  1  vk
2, as shown in Figure 8.13. 

»  At 0 K the energy of the system is lowered, with respect to the normal state by  

 (us un )(T  0)  G( F )
2

2(0)  (8.79) 

where , called the “gap,” is substituted for Eb and is written 

 (0)  2 D e
1

VG( F ) .  (8.80) 
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Note however the numerically significant difference between (8.68) and (8.80) 
introduced by the replacement in the numerator of 2 by 1 in the argument of the 
exponential, since with the same numerical values we obtain 

 F  5 eV   ; D  20 meV   ;   G( F)V  0.25   ;   (0)   meV 

(0.75 meV is equivalent to a temperature of T  8.5 K that is of the order of mag-
nitude of critical temperatures in metals and superconducting alloys). 

 
Figure 8.13 - Probability of occupation vk

2 and of non-occupation uk
2  

of a pair state  k  ,  k  by a COOPER pair 

k = uk vk is the condensation amplitude. It translates the “involve-
ment” of the pair state   k  ,  k  in lowering the energy of the system. 

»  Scattering of pairs of electrons between states  k  ,  k by the effects of interac-
tion is central. A pair state  k  ,  k  contributes all the more to the lowering of 
the energy of the system if it can be both an initial state with a large probability 
of being occupied and a final state with a significant probability of being empty. 
The relevant quantity, which weights these two contradictory aspects, is the con-
densation amplitude 

  k  ukvk  (8.81) 

the product of the probability amplitude of occupation vk by the probability am-
plitude of non-occupation uk in this state. BCS theory shows that the gap  is al-
so the product of the potential V and of the sum of condensation amplitudes over 
all the pair states 

 
 
 V k

k
.  (8.82) 
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It is clearly seen (in Fig. 8.13) that the unavailable pair states (k  kF ; vk  0) or 
those occupied by electrons that are blocked (k  kF ; uk  0) do not contribute to 
the gap. Those that do participate are situated in the vicinity of the FERMI level 
where the product uk vk is highest. 
Similarly to (8.77), the range of delocalization, which is the width of the func-
tion k

 , is extended over an interval k related to  by 

 k
vF

.  (8.83) 

› The form of the internal energy of the superconductor (8.79) can be understood 
by writing that the number of pair states situated in the band k is of order 
G( F)  and each contributes to a lowering of the energy of order  /2. 

› In view of the expression (8.13) for G( F), the number of electrons that contrib-
ute effectively to the lowering of energy by delocalization amount typically to a 
fraction  / F  2 10 4 of the conduction electrons. Expressed per conduction 
electron of the metal, the energy gain is of order 2/ F  0.2 eV (equivalent to 
a temperature  2 10 3 K). 

8.5.3 - Quasiparticles 

»  In the normal metal at 0 K, the levels k (of negative energy k<
 6) situated below 

the FERMI level are occupied while the levels k (of positive energy k>) situated 
above are empty. An electron (quasiparticle) placed in a state k (k  kF) increas-
es the energy of the system by an amount Ek

n  k>. A hole (quasiparticle) created 
on a level k (k  kF) increases the energy of the system by (a positive) 
Ek

n   k< since it was necessary to take away an electron of (negative) energy 
k<  

in order to create it. Close to the FERMI level the energies of the quasiparti-
cles of the normal metal is 

 Ek
n  k 

2

2m
k2 kF

2
2kF
m

k kF  (8.84a) 

with two distinct linear branches: one branch k> of “electron” quasiparticles  and 
one branch k of “hole” quasiparticles (Fig. 8.14a). 

»  In the superconductor the notion of quasiparticle becomes more subtle since near 
the FERMI level the pair states, over which the COOPER pairs are delocalized, are 
occupied with probability vk

2 and unoccupied with probability u k
2 and one can no 

longer draw a clear distinction between the electron and hole quasiparticles. We 
emphasize three major points: 
›  unlike COOPER pairs which are delocalized over pair states, the quasiparticles 

of the superconductor occupy individual states  k  and/or states   k “stably”;

                                                        
6 We recall that  is the energy measured from the FERMI level. 
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›  each quasiparticle has both electron and hole character. A quasiparticle occupy-
ing a state   k  or   k  appears with probability v k

2 in the form of a hole and 
with probability u k

2 in the form of an electron;7 
›  the creation of quasiparticles in the states  k  and/or   k  is necessarily ac-

companied by the elimination of the pair state  k  ,  k  from the set of the 
states over which the COOPER pairs can be delocalized, which has a significant 
cost in energy. From the perspective of single COOPER pairs this is clear since 
the fewer the states over which a COOPER pair is delocalized, the less is its 
binding energy. This translates in BCS into the result that the calculated gap 
diminishes because the sum in equation (8.82) is over fewer values of k. Tak-
ing into account the contribution of the kinetic energy, we can show that the to-
tal energy necessary for the creation of such quasiparticles is 

 
 
Ek  2  k

2  2 
2k2

2m F

2

.  (8.84b) 

 
Figure 8.14 - Quasiparticle dispersion near the FERMI level 

In a normal metal (a) kF perfectly separates the electron quasiparticles from the 
hole quasiparticles. Near the FERMI level, the dispersion is linear. In a BCS super-
conductor (b) there is no definite limit between the two types of quasiparticles. 
While far from kF, the quasiparticles can be identified as being electrons or holes, 
it is not the same near kF where the quasiparticles combine the two  aspects. 

It then follows that their dispersion relation has a hyperbolic form (Fig. 8.14b) with 
a branch k> said to be “electron-like”, on which the probability for a quasiparticle 
to appear in the form of an electron is higher (u k

2  v k
2), and a “hole-like” branch  

(u k
2  v k

2) on which it is now the probability to appear in the form of a hole that is 
higher. When | k| increases and becomes larger than , these branches tend asymp-
totically towards those with the same names in the normal state, corresponding to 
(uk  1, vk  0) and (uk  0, vk  1) respectively. The minimum energy required for 

                                                        
7 N.N. BOGOLIUBOV (1958) Nuovo Cimento 7, 794;  

J.G. VALATIN (1958) Nuovo Cimento 7, 843. 
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the creation of a quasiparticle is the quantity which then takes it full sense of a 
“gap”. In the simplest description we only retain the notion that a fraction of the 
electrons have left the superconducting condensate in order to behave as “normal 
electrons”. 

Since each individual state  k  corresponds to a possible quasiparticle state, the 
density of quasiparticle states D(E) is related to G(k) by 
 D(E) dE  G(k) dk (8.85) 
or, with the dispersion relation (8.84) 

 D(E)  G( F ) E
E2 2

.  (8.86) 

As a consequence of the conservation of the total number of states, those in the 
normal metal that were between F and F   are mainly “transferred” to the diver-
gent part of D(E) (Fig. 8.15). 

 

Figure 8.15 
Quasiparticle density of states 
The density of states D(E) of the quasiparticles 
has an energy gap  D(E) diverges at   
and then decreases towards the free  
electron density of states G( F).  
The free-electron states of the non-super- 
conducting material that had been between  
0 and , are “transferred” to energies above  

8.6 - Consequences of the energy structure 

8.6.1 - Critical temperature 

At a non-zero temperature T, some COOPER pairs are disassociated by thermal acti-
vation to give quasiparticles that eliminate pair states from those available for the 
delocalization of the remaining COOPER pairs (Fig. 8.16), and thus reduce the gap. 

The gap at temperature T can be determined by showing that each pair state 
 k  ,  k  has a probability 2f (T, Ek) of being eliminated from the states available 
to the COOPER pairs for delocalization, where f (T, Ek) is the FERMI function for the 
occupation of a state  k , and that the condensation amplitude (8.82) is reduced by 
the factor 1  2f (T, Ek), leading to 

 
 

(T )  V k
k

1 2 f (T, Ek ) .  (8.87) 
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Figure 8.16 - COOPER pairs and quasiparticles 

(a) at 0 K the COOPER pairs (••) are delocalized between the pair states situated essentially in 
the layer k contained between kF  k  and kF  k . The higher states are empty and the 
lower states are occupied by blocked pairs. (b) (c) At non-zero temperatures, quasiparticles 
(×) occupy some of the individual states of the layer k and eliminate pair states construct-
ed from these single-particle states from the states over which COOPER pairs can be delocal-
ized. This results in a decrease of the gap and a reduction of k which eventually leads to 
disappearance of the superconductivity at Tc . (d) At Tc and above, we find the usual sche-
ma with quasiparticles (normal electrons) on an interval of order kBT around the FERMI level. 

After a slow decrease of the gap as long as kBT  (0), we see a phenomenon of 
collapse when kBT approaches (0). There is then a rapid multiplication in the 
number of quasiparticles that eliminate more and more pair states from possible 
delocalization and cause a reduction in the gap which facilitates the generation of 
new quasiparticles that in turn reduce the gap, and so on… By an avalanche effect, 
the gap decreases very rapidly from about 0.75 Tc to disappear at Tc (Fig. 8.17). 

 
Figure 8.17 - Temperature dependence of the gap 

The gap decreases with temperature, at first very slowly between 0 K and Tc /2 
then with a rapid collapse above 0.75 Tc . The experimental points are results of 
measurements on indium, tin and lead. The full line represents the prediction of 
BCS theory. [From GIAEVER & MERGELE, 1961, © The American Physical Society] 8 

                                                        
8 I. GIAEVER & K. MEGERLE (1961) Phys. Rev. 122, 1101. 
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The superconductivity disappears by the multiplication of quasiparticles that be-
come normal holes and electrons and by a reduction of the density of COOPER pairs 
that find fewer and fewer states over which they can be delocalized. 

The BCS calculation leads to the relation between the critical temperature Tc and 
the energy gap at 0 K 
  (0)  1.76kBTc  (8.88) 

and shows that close to Tc , the gap varies as 

 
  

(T )  1.55 (0) 1 T
Tc

½

.  (8.89) 

Table 8.1 - Values of characteristic physical variables in some “classical” superconductors 
The values of 2 (0)/kBTc should be compared to the value 3.52 of the 
BCS model. When it is significantly larger we speak of strong coupling. 

 Tc [K] D [meV] 2 (0) [meV] 2 (0)/kBTc 

Al 1.175 35.76 0.34 3.40 
Pb 7.196 8.67 2.70 4.41 
Nb 9.250 22.79 3.00 3.81 
Sn (white tin) 3.720 16.45 1.40 4.43 
Hg 4.150 5.95 1.70 4.82 

Remark - The blocking effects of pair states by quasiparticles is also seen when, 
without changing the temperature T, new quasiparticles are introduced by tunneling 
processes, by breaking COOPER pairs via irradiation, or by injection of quasiparti-
cles. By blocking new pair states  k  , k the excess quasiparticles produce a  
reduction in the gap.9 

In the inverse effect, the extraction of quasiparticles by techniques of tunneling 
frees up pair states and leads to an increase in Tc

 .10 More subtly, a microwave of 
energy less than 2 , that cannot destroy COOPER pairs, increases the gap and Tc by 
ejecting quasiparticles from the region k where they were blocking the heavily 
weighted pair states towards higher energy states rarely visited by COOPER pairs.11 

As this process occurs out of equilibrium, the amplitude of the effect is intrinsically 
tied to the time necessary for recombination of quasiparticles into COOPER pairs. 

                                                        
9 C.S. OWEN & D.J. SCALAPINO (1972) Phys. Rev. Lett. 28, 1559 ; 

J. FUCHS et al. (1977) Phys. Rev. Lett. 38, 919. 
10 C.C. CHI & J. CLARKE (1979) Phys. Rev. B20, 4465. 
11 T. KOMMER & J. CLARKE (1977) Phys. Rev. Lett. 38, 1091. 
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8.6.2 - Nature of the superconducting gap 

The superconducting gap is of a nature very different from that of a semiconductor 
which is due to the periodic potential of the lattice ions. In that case the structure of 
the energy levels is essentially independent of temperature and the electrons occu-
py the levels individually with a probability given by the FERMI function. The elec-
tron interactions bring only minor corrections. 

In superconductors, the gap has its origin in the interactions between electrons. At 
low temperatures it varies little, but after the quasiparticles occupy the pair states it 
collapses and falls to zero, which marks the disappearance of superconductivity. 

There exists an operational semiconductor representation of the “density of states” 
of superconductors. In that representation the two bands equivalent to the conduc-
tion and valence bands of semiconductors are, for the first, the density of states 
D(E) of the quasiparticles and for the second D*(E)  D(  E) (Fig. 8.18). They are 
separated by 2  (the gap in the semiconductor sense) 

 
Figure 8.18 - Semiconductor representation 

The equivalents of the “conduction band” and the “valence band” are the density of 
states of quasiparticles and its reflection, respectively. This representation is partic-
ularly convenient if we wish to take into account tunneling effects of quasiparticles. 

This operational representation is particularly useful to describe the tunneling ef-
fects of quasiparticles (to be distinguished from JOSEPHSON effects that are the 
tunneling of COOPER pairs) and must be restricted to such effects. 

8.6.3 - Coherence length 12 

Similarly to the result of section 8.4.5, the average distance between two electrons 
in a pair is related, by the uncertainty principle, to the spread k over pair states 
 k  ,  k  visited by the COOPER pairs. The calculation, like that giving the rela-
tion (8.78), leads to the result 

 BCS(0)  vF
(0)

 (8.90) 

                                                        
12 We remind the reader: the energy measured from the FERMI level  (in regular type) and 

the coherence length  (in italics). 
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that is to be identified, in clean superconductors, with the length 0 defined in 
Chapter 3 (section 3.2). As was mentioned in the same section, for rather subtle 
reasons the spatial extension of COOPER pairs is 0  BCS(0), not only at 0 K, but 
at all temperatures. 

The BCS coherence length BCS(T ) is given by a generalization to non-zero tem-
perature of (8.90) 

 BCS(T )  vF
(T )

.  (8.91) 

In clean superconductors, BCS(T ) is also the coherence length (T ), introduced in 
Chapter 6 (section 6.4.1) as the distance necessary for a density of superconducting 
electrons  ns to pass from a value of zero at a surface to its bulk value ns . BCS(T ) 
varies as the inverse of the gap (T ) represented in Figure 8.17 and, in view of the 
relation (8.89), diverges at Tc as follows 

 BCS(T ) (Tc T ) ½ T Tc.  (8.92) 

In dirty superconductors (with electron mean free path  less than 0), we must 
distinguish between the coherence length BCS(T ) related to the gap and defined  
by (8.90), the coherence length (T ) that is the distance over which the supercon-
ducting electron density changes from 0 at a surface to its bulk value ns , the 
PIPPARD length P entering into the relation (3.25) for the vector potential, and the 
distance between two electrons in a COOPER pair, close to the coherence length 0. 

8.6.4 - Critical field - Free enthalpy of condensation 

The free enthalpy of condensation introduced in Chapter 4 

 gs
cond  0

Hc
2

2
 (8.93) 

was interpreted as the free enthalpy of the formation of COOPER pairs per unit  
volume.  

At zero temperature and zero field, where the density of free enthalpy 
g  u  0MH  Ts coincides with the internal energy, expression (8.79) gives us 

 G( F )
2(0)
2

 0
Hc

2(0)
2

 (8.94) 

which relates the superconducting gap and the thermodynamic critical field, 

 Hc(0)  G( F )

0
(0).  (8.95) 

Expressing the gap  as a function of BCS (8.90), and relating the LONDON pene-
tration depth L (2.24) to the density of states G( F) (8.13), to the FERMI velocity 
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vF  kF
 / m where kF is the FERMI wave vector (8.12) and to the flux quantum (6.22 

and 9.16), we obtain the expression for Hc(0), 

 H c (0)  3
2

0

0 L (0) BCS(0)
 (8.96) 

close to the relation of GINZBURG-LANDAU theory (6.25). 

Figure 8.19 
The critical field 

BCS theory predicts variation of the 
critical field close to TUYN’s law with a 

behavior Hc(T )  Hc(0) [1  T/Tc
 ] near Tc . 

8.6.5 - Electronic specific heat 

At low temperatures, typically below Tc
 / 2, the gap is to a first approximation con-

stant and equal to (0). Because of the divergence of the density of states D(E) at 
the gap edge (Fig. 8.15) we can consider, in a slightly simplistic “two-state” model, 
that all the levels that in the normal state had been between F and F +  are pushed 
to the gap edge, which produces 2G( F) (0) states of quasiparticles squeezed to-
gether at (0). With an occupation probability of each of these states of e  (0)/kBT, 
(kBT being smaller than (0), the excited states are in the tail of the FERMI func-
tion) we obtain at temperature T, 

 U  2G( F ) (0) (0) e
(0)

kBT  (8.97) 

and hence a specific heat 

 Cs
el  d( U )

dT
2G( F ) (0) 3

kBT 2  e
(0)

kBT  (8.98) 

dominated at low temperatures by the exponential term, or 

 Cs
el A e

(0)
kBT  (8.99) 

that corresponds precisely to the experimental results shown in Figure 4.5. 
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A more exact expression but similar to this 13 was obtained by BCS. The exponen-
tial term is due to the fact that quasiparticle creation requires a minimal non-zero 
energy. This is the signature of a gap for all the quasiparticle states. 

Close to Tc
 , we must include the strong temperature dependence of the gap and the 

two-state model is no longer valid. By rigorous analysis, the BCS theory predicts a 
discontinuity (Fig. 8.20) 

 
Cs

el Cn
el

Cn
el  1.43  (8.100) 

consistent with experimental results. 

Figure 8.20 - Electronic specific heat 
At low temperatures the electronic 
specific heat of the normal state is 
linear in T, while in the superconduc-
tor it varies exponentially because of 
the gap. A discontinuity appears at Tc . 

8.6.6 - Critical current density 

We shall now see how the existence of a gap leads to a critical velocity vc for the 
electrons (and therefore to a critical current density) beyond which the energy of a 
COOPER pair becomes greater than that of two unpaired electrons, leading to pair-
breaking. 

Normal metal 

At 0 K, the electrons of the normal metal occupy the states k  kF, inside the FERMI 
sphere (see section 8.1.1). 
»  In the absence of an electric field, the distribution of momenta p  k of the elec-

trons is isotropic, as is that of the velocities. The mean velocity v  of all the elec-
trons is zero. In k space (Fig. 8.21a), the FERMI sphere is at rest. 

                                                        
13 The expression given by BCS at low temperatures (T  (0) / kB) 

is Cs
el (T ) 

2 kB

(kBT )3/2
G( F ) (0)  5/2e 

(0)
kBT .  
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»  Under the effect of an electric field E applied in the  x direction (Fig. 8.21b), 
each electron experiences a force 

 
 
F  qe E  m dv

dt
 dk

dt
 (8.101) 

that translates into a uniform displacement of the FERMI sphere by an amount  

 
 

kx  eE t  (8.102) 

and, in real space, by an increasing average velocity of the whole set of electrons 
in the x direction, 

 
 

v  eE
m

t  (8.103) 

which corresponds to an increasing current density in the E direction 

 j  ne v  ne2E
m

t .  (8.104) 

〈 〉

 
Figure 8.21 - Representation, in the space of wave vectors, of the behavior  

of the electrons of a “normal” metal in an electric field 
(a) Without the electric field, the FERMI sphere is centered at the origin.  

(b) With the electric field, the FERMI sphere is shifted by  kx . 

The “frictional” term that leads to a limiting average velocity v  of the electrons 
(see section 2.2.1) includes the existence of collisions with defects and phonons by 
which the electrons located in the front of the displaced FERMI sphere (Fig. 8.21b, 
point A) are scattered to the rear (point B) thereby losing a momentum 2 kF. When 
a balance is reached between the displacement in velocity (8.103) of the FERMI 
sphere due to the electric field and the constant transfer of electrons from the front 
to the rear, the sphere appears to be immobile and shifted by  kx . The electrons 
then have an average velocity 

 v 
kx

m
 (8.105) 

and transport a steady current density 

 j  ne v .  (8.106) 
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Metal in the superconducting phase 

Possible scattering processes 

In the superconducting phase and in a zero field, the electrons that form COOPER 
pairs are scattered from pair states  k  , k towards pair states  k’  , k’ , which 
means that the scattering of an electron from a state  k into a state  k’ entails, by 
solidarity, the scattering of its partner in the state  k into the state  k’ . This is 
in particular the case of electrons occupying pair states whose single-particle states 
are located one in the front and the other to the rear of the FERMI sphere: a COOPER 
pair occupying the state  k  , k  (Fig. 8.22a, black dots) will occupy after scatter-
ing the state  k’  , k’  (white dots). Let us focus on these front to rear scatterings, 
which in fact are those that are the most efficient for depairing. 

If, as in a normal metal, we turn on an electric field E in the x direction, the FERMI 
sphere is displaced. The pair state  k  , k  becomes  (k +  kx )  , ( k +  kx )  and 
the pair state  k’  , k’  becomes  (k’ +  kx )  , ( k’ +  kx ) . During a collision, 
there are two possible processes: 
»  first process (Fig. 8.22b): the COOPER pair is scattered from the pair state 
 (k +  kx )  , (  k +  kx )  into the pair state  (k’ +  kx )  , (  k’ +  kx ) . Scatter-
ing of an electron from the front towards the back is compensated by scattering of 
an electron from the back towards the front. The mechanism stabilizing the ap-
parent displacement of the FERMI sphere has disappeared. As in a perfect conduc-
tor, the effect of an electric field is to increase the displacement of the FERMI 
sphere in k space according to the relation (8.102). If we turn off the electric field 
(E  0), the FERMI sphere keeps the shift it has acquired, and the current density 
remains constant: the superconductor appears a perfect conductor, with resistivity 
null; 

»  second process (Fig. 8.22c): the pair breaks into independent single electrons. 
The electron  (k +  kx )  that was to the front, is back-scattered into the state 
 (  k +  kx )  without the second electron of wave vector  (  k +  kx )  being 
forward scattered. This is the process encountered in normal resistive metals. 

〈 〉
〈 〉

〈 〉
〈 〉

〈 〉〈 〉
〈 〉
〈 〉 〈 〉

 
Figure 8.22 - FERMI sphere and scattering processes in an electric field 

(a) E  0: FERMI sphere at rest. Example of a scattering process,  k  , k    k’  , k’ , 
E  0: FERMI sphere shifted by  k . Examples of scattering processes: (b) without pair 
breaking, below the critical current, (c) with pair breaking, beyond the critical current. 
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Energy balance 

The process that actually occurs will be whichever has lower energy. The net initial 
energy Einitial of the two electrons before scattering is equal to the sum of the kinet-
ic energies of the electrons, diminished by the binding energy 2  of the pair, 

 Einitial 
2

2m
kF  kx

2


2

2m
kF  kx

2 2   (8.107) 

During scattering without pair-breaking (Fig. 8.22b), the net energy of the two 
electrons is not modified. The final energy of the scenario represented in Fig-
ure 8.22b is therefore 

 Efinal
(b)  Einitial.  (8.108) 

When there is scattering with pair-breaking (Fig. 8.22c), on one hand the kinetic 
energy of the electron that passes from the front to the back diminishes, without 
any modification of the kinetic energy of the other electron; and on the other hand 
the binding energy disappears. The final energy in the scenario of Figure 8.22c 
becomes 

 Efinal
(c) 

2

2m
kF  kx

2


2

2m
kF  kx

2  (8.109) 

or, using the fact that  k   kF, 

 Efinal
(c) Einitial  2 4

2kF
2m

k .  (8.110) 

As a consequence, the superconducting state will be destroyed if Efinal
(c)  Efinal

(b) , i.e. if 

 2 4
2kF
2m

kx  0 or equivalently kx  m
2kF

 (8.111) 

which shows that there is a critical velocity vc for the displacement of a COOPER 
pair. Beyond the velocity vc, breaking up the COOPER pair into two normal elec-
trons is energetically more favorable, leading to depairing. 

 vc  m
m
2kF

.  (8.112) 

There is therefore a critical current jc beyond which the material reverts to the nor-
mal state, given by 

 jc  nevc 
ne

kF
 (8.113) 

which, from the relations (8.95), (8.13) and (8.10), namely 

 Hc 
G( F )

0
; G( F )  3n

4 F
; F 

2kF
2

2m
 (8.114) 
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can be rewritten as 

 
 
jc  ⅔ 0 ne2

m
 ⅔

Hc

L
.  (8.115) 

Up to a coefficient  ⅔ , this is the generalized SILSBEE criterion formulated in 
Chapter 5 (section 5.1), i.e. when the current density reaches the critical current jc 
at some place, the superconductor passes to the normal state there. 

A model that is more exact numerically should take into account the distribution of 
transitions from the whole of the front to the rear. 

8.7 - Superconducting electrons and the LONDON penetration depth 

The microscopic approach to superconductivity also allows us to clarify the notion 
of the “density of superconducting electrons” ns that appears in the expression for 
the LONDON penetration depth and the statement (see section 2.4.1) that at 0 K, it 
involves all the free electrons. 

 L 
m

0nse2
 (8.116) 

Up to now, we have distinguished somewhat artificially three categories of elec-
trons:  
»  the blocked electrons sufficiently far below the FERMI level; they are the majority 

of the electronic population; 
»  the electrons in COOPER pairs that are delocalized and jump between pair 

states  k  , k  within an interval  k centered on the FERMI surface; 
»  the single electrons (quasiparticles) that occupy some of the states k in the  

layer  k. 

In order to count the number of electrons that intervene in the expression for the 
LONDON penetration depth, and before considering the superconductor at finite 
temperatures, we must return to the scattering processes leading to the resistivities 
of the normal metal and the superconductor at 0 K. 

In the normal metal, the shift of the FERMI sphere under the influence of an electric 
field stabilizes at  kx   by the process of scattering of electrons from the front of 
the sphere to those at the rear (Fig. 8.21b). This scattering process concerns only 
the electrons situated in the vicinity of the FERMI level, while the shift in k, or the 
frictional velocity, involves all the conduction electrons, as is apparent in the rela-
tion (8.104). Likewise in the superconducting state at zero temperatures, only the 
COOPER pairs around the FERMI level are scattered without being disassociated 
while all the electrons of the metal (relation 8.102) are uniformly accelerated. 
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To sum up the situation, in both the normal metal and in the superconductor, only 
the electrons at the FERMI level enter into the scattering process and they bring 
underlying electrons in their wake. 

In the superconductor at a non-zero temperatures there is, close to the FERMI level 
a coexistence of electrons bound in COOPER pairs and of single electrons (qua-
siparticles). In the above image, and by a pure counting argument, we can consider 
that each of these electron populations situated near the FERMI level brings along 
“its” own group of underlying electrons: 
»   the underlying electrons of the quasiparticles appear as normal electrons (in the 

resistive sense). We denote their density by nn(T ); 
»  the underlying electrons of the COOPER pairs are the superconducting electrons. 

Their density is ns(T )  = n  nn(T )   (n is the total density of electrons). 

Very qualitatively, we can make the hypothesis that the ratio ns(T ) / nn(T ) is the 
ratio of the populations of electrons involved in COOPER pairs to quasiparticles at 
the FERMI level. With this we return to a two-fluid model, like that proposed by 
GORTER and CASIMIR.14 The decrease in the number of COOPER pairs in favor of 
quasiparticles near the FERMI level is then accompanied by the decrease in the  
density of superconducting electrons ns in favor of the normal electrons nn

 . 

The BCS calculation allows us to determine the number of normal electrons  
and, by subtraction, the number of superconducting electrons. The ns(T ) that  
enters into the expression for L(T ) (relation 2.24) is sometimes referred to as the 
“operational” density of superconducting electrons. 

                                                        
14 C.J. GORTER & H.B.G. CASIMIR (1934) Physik. Z. 35, 963. 
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Appendix 8 

Matrix elements for the interaction potential between particles 

The non-diagonal terms are the matrix elements 

       p ,s V̂ m ,n  1
V 2

V
e ikp r1e iks r2  V( r2 r1 )eikm r1eikn r2d3r1d3r2

V
.  (8.117) 

The integration on r1 and r2 is over the volume V  of the box. Defining 
 r1  r2  r 

we can write, if the volume tends to infinity, 

       p ,s V̂ m ,n  1
V 2 V(r)e i(ks kn ) rd3r

V
e i (ks kn ) (km kp ) r1d3r1

V

.  (8.118) 

This remains a good approximation if for r1 in the box, so too is r2  r1  r for all r 
less than the range of the potential, i.e. if the size of the box is much larger than the 
range of the potential (to avoid boundary effects). Under these conditions, we can 
also make the approximation 

 
  

V(r)e i(ks kn ) rd3r
V

V(r)e i(ks kn ) rd3r
all space

 V V(q)  (8.119) 

   q  k s k n  

where here the combination V V(q) (and not just V(q)) is the FOURIER transfor-
mation of V(r) (whose range is limited to be within a unit volume V ). 

When V   , 1
V

e i (ks kn ) (km kp ) r1d3r1
V

  1 for km kp  ks kn  and  0 

for  km kp ks kn.  

So, if q  ks  kn  km  kp , p ,s V̂ m ,n  V(q)  (8.120) 

and otherwise, p ,s V̂ m ,n  0.  



Chapter 9 
 

COHERENCE AND THE FLUX QUANTUM 

As described by BCS theory, that we have introduced qualitatively in Chapter 8, 
the superconducting state results from the formation of a “coherent” state of  
COOPER  pairs formed by the association of two electrons. Although this associa-
tion is dynamic and non-local, the COOPER pairs will be considered in this chapter 
as “particles” of mass mp and charge qp double those of an electron, and whose 
density np is half that of superconducting electrons 

 mp    2m     ;     qp    – 2e     ;     np 
ns

2
.  (9.1) 

In the language of Chapter 8 (section 8.7), they are operational COOPER pairs, rele-
vant only when discussing transport phenomena. 

The totality of the particles in the BOSE-EINSTEIN condensate is described by a 
single wave function 1 p(r, t), 

 p(r,t)  np(r,t)  ei (r,t )  (9.2) 

where  (r , t) is the phase of the wave associated with the “particles” that are 
COOPER pairs and np(r, t) is their density at the point r at time t. 
 np(r, t)    p

*(r, t) p(r, t). (9.3) 

9.1 - Current density and the LONDON equation 

In the presence of a vector potential A and an electric potential V: 
»  the (generalized) momentum of the “particle” (the COOPER  pair) can be written 

as for any charged particle 2 (see App.9.1) 
 p    mp

 v  qp
 A (9.4) 

where v is the velocity of the center of gravity of the COOPER pair; 

                                                        
1  in “regular type”  denotes a two-particle wave function, while the “italic”  is reserved 

for the notation of magnetic field fluxes. 
2 C. COHEN-TANNOUDJI, B. DIU & F. LALOE (1986)  

Quantum Mechanics Vol. II, 1491-94. 
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»  the Hamiltonian takes the form (see App. 9.2)  

 
  
Ĥ  1

2mp i
qpA

i
qpA  qpV ;  (9.5) 

»  the density of electric current j(r, t) is defined by 

 j(r,t)  qp Re p
1

mp i
qpA p .  (9.6) 

Substituting the expression for the wave function (9.2) into (9.6), in a situation 
where the density of COOPER pairs np is uniform throughout the sample, the current 
density becomes 

 
 
j(r,t)  np qp mp

(r,t)
qp A(r,t)  (9.7) 

or, after taking the curl (the vector product of the gradient operator ) of the two 
sides, and using the general relations B  × A and ×   0, 

 
  

 j 
np qp

2

mp
B  (9.8) 

which, from the definitions (9.1), is nothing other than the second LONDON  
equation. In the expression (9.7), the phase  (r , t) can be connected to the integra-
tion constant (r, t) in the relation (2.89) of Chapter 2, section 2.12.2 (see App. 9.3) 

with 
 

(r,t) 
qp (r,t).  

9.2 - Phase of the wave function 

As in optics, the change of the phase  along a line ( ) is equal to the circulation 
of the wave vector k  p/  (Fig. 9.1) 

  k dl  p dl  (9.9) 

or, using the expression p  mp
 v  qp

 A for the momentum, 

   
 

mp v dl   
 

qp A dl  (9.10) 

 phase change  contribution due to  magnetic contribution 

 along a line ( )  the velocity velocity   mag  

and if we make the additional hypothesis that the density of COOPER pairs is uni-
form on the path followed and j  np qp

 v 
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   
mp

np qp
j dl   

qp A dl  (9.11) 

 phase change   contribution due to the  magnetic contribution 
 along a line ( )  current density current   mag  

Figure 9.1 - Phase of the wave function
The variation of the phase of the wave function

of the condensate along a circuit equals the
circulation of the wave vector along this circuit.

The phase change of a wave function of the superconducting condensate during a 
displacement along a line (   ) between two points C and D equals the sum of the 
circulations of the current density j (weighted with the coefficient [mp /np qp ]) and 
of the vector potential A (weighted with the coefficient qp /  ) on the path used to 
join the two points, provided there is a uniform density of COOPER pairs along this 
path. 

9. 3 - Flux quantization 

9.3.1 - The fluxon 

If we follow a closed path, the acquired phase can only be a multiple of 2 , so that 

 
mp v dl 

qp A dl  2s  (s integer)       (9.12) 

and if the pair density np is uniform, 

 
 


mp

npqp
j dl 

qp A dl  2s .  (9.13) 

As the integer s can be positive or negative, the minus sign before 2s  is introduced 
for convenience, essentially because of the negative charge qp of the COOPER pairs. 

Since the circulation of A around a closed path is the flux of B  × A across any 
surface limited by this path, for the orientation of Figure 9.2 we have 

 
 

mp

qp
v dl  B dS

S
 h

qp
s  s 0  (9.14) 

and if the density of COOPER pairs np is uniform along the path, 

 
mp

np qp
2 j dl  B dS

S
 s 0 .  (9.15) 
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0, which has the dimension of a flux, 

 0 
h
qp

 h
2e

 2.068 10 15 Wb  (9.16) 

and depends only on the universal constants of PLANCK and the electron charge, is 
called the “magnetic flux quantum” or also the “fluxon”. We note that its value is 
particularly tiny, since it is the flux of a magnetic field of 2.07 10 9 T across a sur-
face of 1 mm2, or of 2.07 10 3 T across 1 m2. 

 

Figure 9.2 
Relative orientations of a closed loop  
and the surface it delimits 
Note the relative orientations of the element 
of length dl and of a surface element dS. 

9.3.2 - Simply connected superconductor 

We shall now consider an initial closed loop ( ) in a simply connected 3 supercon-
ductor. Since the solid has no hole that “crosses it”, this loop can be progressively 
reduced to a single point by a succession of loops ( i

 ) infinitesimally close to one 
another (Fig. 9.3a). The change in phase is obviously zero (s  0) when the loop 
shrinks to a point, and provided there is no reason for the value of  s to change dur-
ing an infinitesimal modification of the loop, we conclude that s  0 for all internal 
loops of the superconductor, whether they are large or small. Therefore, by virtue 
of (9.15), 

 
 


mp

np qp
j dl 

qp B dS
S

 0.  (9.17a) 

This is particularly obvious if the closed path is well inside the superconductor, 
where both the magnetic field and the current density vanish. It remains true if the 
path crosses the LONDON region for the contributions of the current and the mag-
netic field there are equal and opposite. If we split a loop such as 1

  into two parts: 
first a path 1  from C to some other point D on 1 and a second 1  from D to C, 
we have 

 
C( 1 )

D
 

D( 1 )

C
 0

C( 1 )

D
 

C( 1 )

D
.  (9.17b) 

                                                        
3 In other words the superconductor has no hole that comes out at two distinct parts of the 

surface. For more details, see note 11 of Chapter 2. 
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Therefore in a simply connected superconductor, the phase change between any 
two points C and D does not depend on the path followed, and consequently at 
each point we can define a unique phase  (r , t). 

9.3.3 - Multiply connected superconductor 

The situation is different in a multiply connected superconductor, i.e. one that has 
at least one hole coming out at two distinct parts of the surface. An example is a  
plate with a hole (Fig. 9.3b). In this case, it is no longer possible to shrink a loop 
that passes through the hole and reduce it to a point while remaining inside the su-
perconductor, and  there is no longer any reason for s to vanish. 

 
Figure 9.3 - Closed paths in simply connected and non-simply connected superconductors 

(a) In a simply connected superconductor any closed loop can be continuously de-
formed until it reduces to a single point without singularity. (b) In a multiply connect-
ed body the loop surrounding a hole can no longer be shrunk to a point. The loop rep-
resented here avoids the LONDON region and any screening currents associated with it. 

When the closed loop ( ) is wide enough never to pass inside the LONDON region 
around the hole crossed by a magnetic field B, and therefore never crosses a non-
zero current density, the relation (9.15) reduces to 

 
 

B dS
S

 s 0.  (9.18) 

In a multiply connected superconductor, the flux  of the magnetic field through a 
surface bounded by a closed loop that avoids all LONDON regions (Fig. 9.4), is 
equal to an integer number of fluxons. 

9.3.4 - Experimental proof of the existence of COOPER pairs 

In their original article V. GINZBURG and L. LANDAU 4 wrote that the electric 
charge carried by superconductivity has no reason to be different from that of the 
electron. This means that still at that time no-one had imagined the existence of 
COOPER pairs, even if we can suspect that this remark betrayed some uncertainty 
about the issue. 

                                                        
4 V. GINZBURG & L. LANDAU (1950) Zh. Eksp. Teor. Fiz. 20, 1064. 
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Figure 9.4  -  Flux of magnetic field “through” a “superconducting hole” 

The magnetic field present in the hole fades away in the superconductor with the pene-
tration depth . The surface across which the flux is quantized encompasses not only the 
hole, but also the region of decreasing field in the superconductor. The large circle ( ) 
that limits the surface through which the flux is determined avoids the LONDON region. 

The possibility of determining the charge of the carriers of superconductivity, and 
thereby reveal the existence of the COOPER pairs, appears only with a measurement 
of the flux quantum. In fact, even though it involves the particle charge, the 
LONDON penetration depth does not allow us to determine its value. This is because 
in the formula for L (Table 9.1), if the charge and mass are doubled, the carrier 
density must also be halved, which leaves the final result unchanged. 

Table 9.1 - Confirmation of the COOPER pairs by the flux quantum  
The combination of measurements of the LONDON penetration depth and the flux 
quantum show that the particles at the origin of superconductivity have a mass 
and a charge double those of the electron. 

LONDON penetration depth  Flux quantum  

L
2 

m

0nse
2


mp

0npqp
2  0 

2
qp


h

2 e
 

The expression for L is insensitive to a grouping 
of the electrons into pairs, to the extent that the 
mass and charge are multiplied by two but the 
density is divided by two. 

Measurements of 0 show that the 
particles involved in the flux quanti-
zation carry a charge double that of 
the electron. 

Experimental proof of the existence of COOPER pairs was provided by the meas-
urement of the flux trapped in a hollow cylinder 5 (Fig. 9.5). The results show un-
ambiguously that the flux is quantized and the charge to include in the expression 
for the flux quantum is double the electronic charge qp   2e. 

                                                        
5 W. GOODMANN & B.S. DEAVER (1970) Phys. Rev. Letters 24, 870. 
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Figure 9.5 - Demonstration of flux quantization  

The flux trapped in a hollow tin cylinder (of diameter 56 m, thickness 0.5 m) 
as a function of the field in which it has been cooled. The flux increments are 
equal to the flux quantum 0 given in the expression (9.16). [From GOODMANN 
& DEAVER, 1970, © The American Physical Society, with permission] 5 

9.4 - Back to gauges 

9.4.1 - The second LONDON equation 

Independently of any choice of gauge, the equation 
 × p  0 (9.19) 
leads to the second LONDON equation (9.8). In reality this equation is more power-
ful, since it remains valid even if the charge density is not uniform. Indeed, if we 
replace the momentum p by its definition (9.4), it becomes 

  v 
qp

mp
B  (9.20) 

called the “root equation” (see 2.70), from which the LONDON equation can be de-
rived when the charge density is uniform. 

9.4.2 - Simply connected superconductor 

We saw in section 2.12 that in a simply connected superconductor, the choice of 
the LONDON gauge, which constrains the vector potential A (a non-physical varia-
ble) by the conditions  A  0 (in the bulk) and A  n  0 (on the surface) modelled 
on the properties of j (a physical variable), leaves the integration constant  (r, t) 
uniform, and leads to the second LONDON equation in the form 

 j(r,t)  1
0 L

A(r,t)  in the LONDON gauge  (9.21) 

which is equivalent to taking the momentum p to be zero 
 p  0 in the LONDON gauge  (9.22) 
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and since the wave vector k is related to this generalized momentum p, 

 k  p  0   in the LONDON gauge  (9.23) 

the phase difference between any two points vanishes and the phase is uniform in 
the sample (see relation 9.9) 
  (r , t)  constant in the LONDON gauge  (9.24) 

This gauge is said to be “rigid.” In this gauge,  (r , t), the phase of the wave func-
tion, and (r, t), which appeared as the constant of integration in (2.89) represent 
the same quantity up to a multiplicative constant 

 (r,t) 
qp (r,t).  (9.25) 

9.4.3 - Multiply connected superconductor 

When the superconductor is not simply connected (see Fig. 9.4), a magnetic field 
can pass through the superconductor via the hole and the surrounding supercon-
ducting material within the penetration depth . The flux  across a surface bound-
ed by a closed path ( ), that is far enough from the edge of the hole that the current 
density j vanishes everywhere, is equal to 

  B dS
S

 A dl  s 0  (9.26) 

a result incompatible with the relation (9.21) since, if A were proportional to j, the 
integral along ( ) would vanish. 

In a multiply connected body, the conditions · A  0 (in the bulk) and A · n  0 
(on the surface) become insufficient to define a gauge, and we must define for each  
hole the value of s such that 

 
A dl  s 0.  

9. 5 - Flux quantization: application to vortices 

 9.5.1 - Fluxon carried by a single vortex 

The arguments of section 9.3.3 for a hole can be repeated for a single, isolated, 
vortex which has a central non-superconducting singularity that prevents a closed 
loop surrounding it from being deformed to a single point. Applying the rela-
tion (9.18), the flux of the magnetic field across a surface bounded by a path which 
is sufficiently wide to avoid the vortex super-currents, and therefore includes all the 
magnetic fields associated with the vortex, is an integer number of fluxons 
(Fig. 9.6). In fact, although flux quantization allows one vortex to carry several 
fluxons, energy considerations show that except for exceptional cases (see Chap. 6, 
section 6.11.5) it is more favorable to create two vortices, each carrying one fluxon, 
rather than a single vortex bearing two fluxons. 
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Figure 9.6 - Flux quantum carried by a vortex 

The total flux of all magnetic fields around the vortex is quantified and 
equals one quantum of flux 0. The large circle that delimits the area 
through which the flux is measured avoids any regions of current or field. 

9.5.2 - Fluxon in the ABRIKOSOV lattice 

When organized into an ABRIKOSOV lattice (see Chap. 6, section 6.6), the vortices 
become denser with increasing magnetic field, the LONDON zones of neighboring 
vortices overlap and the magnetic field no longer vanishes between the vortex cores 
(see Fig. 6.14). How then, can we associate a fluxon with each vortex? 

A geometrical argument, illustrated in Figure 9.7 provides the answer. 

Suppose we take two vortices V1 and V2 and a point M on the perpendicular  
bisector of their centers which passes through the centers of vortices V3 and V4 
(Fig. 9.7a). If from M we draw the radial currents supposed to be “associated” with 
each vortex (the number of each generating vortex is given in brackets, Fig. 9.7b), 
it is clear by symmetry that the current (3) and the vector sum of currents (1) and 
(2) are normal to the  perpendicular bisector of V1 and V2. 

Furthermore, as we follow the polygonal path (here hexagonal) formed by the bi-
sectors of a central vortex and its neighbors (the WIGNER cell) we see only current 
densities normal to the path. It follows that the circulation of the current density 
around the path vanishes and the magnetic flux across the WIGNER cell is equal to 
one fluxon (see Fig. 9.6). 
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Figure 9.7 - Fluxons in an ABRIKOSOV lattice  

(a) Lines of equal density of superconducting electrons and currents in a dense hex-
agonal  ABRIKOSOV lattice 6. The LONDON currents of two neighboring vortices cancel at 
the middle of the line separating them. (b) The current densities at M and M’, imag-
ined as hypothetical superpositions of the currents “associated” with each vortex are 
normal to the perpendicular bisector of V1V2 . The circulation of the current density 
vanishes around the polygon formed by the bisectors between a central vortex and its 
neighbors (the WIGNER-SEITZ cell). The flux crossing such a cell is equal to the fluxon 0. 

9.5.3 - A confined vortex 

In the experiment described in Chapter 6 (section 6.11.5, fig. 6.24), where a vortex 
is confined to a sample of nanometric scale, the LONDON currents near the surface 
and the vortex currents turn in opposite directions and are therefore separated by a 
neutral line where the current density vanishes. Once again, by applying (9.18), the 
path following this closed line can only be crossed by an integer number of flux-
ons: one if it is a simple vortex, or several if it is a super-vortex. 

The sample itself is subject to a higher flux since we must add the contribution of 
the decreasing magnetic field in the LONDON zone. 

                                                        
6 W.H. KLEINER, L.M. ROTH & S.H. AUTLER (1964) Phys. Rev. 133, A1226. 
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Figure 9.8
Flux through a region with a confined vortex

Above: the magnetic field that decreases
from the surface (LONDON) and increases

as the vortex centre is approached.
Below: Lines of current density dominated by

the vortex current near the center and by
screening currents towards the outside. The
currents, which turn in opposite directions,

are separated by a line of vanishing current.
The magnetic flux across the area enclosed
by this line is equal to one flux quantum 0.  

9.5.4 - Current density around a vortex core 

When we calculated the flux-flow resistivity (see App. 7-B.2, expression 7.78), we 
proposed that in a type II superconductor with a high value of , in other words 
with a small core radius , the current density can be approximated in the region 

 < r   by 

   j (r) 0

2 0
2

1
r

.  (9.27) 

This expression, which can be derived from the fourth MAXWELL’s equation using 
a realistic form for the field B, also follows as a consequence of the phase coher-
ence of COOPER pairs. 

In fact, since the total change of the phase  around a closed path of radius greater 
than  is 2 , it must be the same for any path differing by continuous modification 
of the initial one which does not cross a singularity. This is the case for a path of 
radius r slightly greater than that of the core (  < r  ). The phase variation going 
once around such a path is given, by the relation (9.13), as 

 
mp

qp
v dl  A dl  2

qp
 0  (9.28) 

or, with  denoting the flux through the path of radius r, 

 
mp

qp
(2 r v)   0 . (9.29) 

In so far as the radius r is very small compared to the penetration depth, the flux  
remains much smaller than 0 and, to a first approximation, 
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 v 0
qp

2 mp r
. (9.30) 

When the density of pairs is uniform, 

  j 0
np qp

2

2 mp r
 (9.31) 

thereby proving the formula (9.27). 

9.6 - Generalized LONDON equation in the presence of vortices 

In the presence of a vortex the LONDON equation takes the generalized form 

  B(r)  0
2  j(r)  0 2(r r0 )û0  (9.32) 

where 2(r  r0) is the DIRAC function in two dimensions and r0 is the point on the 
axis of the vortex located in the plane that is perpendicular to the unit vector û0 
along the vortex axis and that contains the point r. In fact this equation (9.32), 
equivalent to the usual LONDON equation at any point other than r  r0 (only the 
vortex axis is completely in the normal state), also includes the quantization of the 
flux. Indeed by taking the flux of the left and right sides of  this equation across the 
surface limited by a contour ( ) surrounding the vortex axis, we find (see equa-
tion 9.15) 7 
 

 
B(r) dS

S
 0

2 j(r) dl  0 .  (9.33) 

When the contour is drawn well beyond the penetration depth, 

 B(r) dS
S

 0 .  (9.34) 

In the presence of a several vortices, (9.32) generalizes to 

 
 
B(r)  0

2  j(r)  0 2(r ri )
i

ûi .  (9.35) 

With these generalized forms, it is easy to calculate the energy of formation of a 
vortex and the repulsive force between two vortices (see App. 7A.3). 

9.7 - Return to the LONDON moment 

In Chapter 2 (section 2.11), it was shown that the second LONDON equation (2.26) 
was inapplicable when the superconducting electron density is not uniform or when 
the current density is determined by more than just the velocity of the electrons, as 

                                                        
7 2(r r0 )û0 dS  1 
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is the case for a rotating sphere (LONDON moment). To treat this class of problems, 
we must start from the root equation (9.20). 

Figure 9. 9
Superconducting sphere
and the LONDON moment

The superconducting sphere of radius R  
is rotating and paths of radius r and r  dr

are centered on the axis of rotation. Inside
the rotating sphere, the magnetic field is

uniform for distances to the surface great
compared to the penetration depth .  

Consider, therefore a superconducting sphere rotating around an axis z with con-
stant angular momentum 0, and take a circular  loop of radius r around the central 
axis, deep enough in the sphere to avoid the LONDON region bordering the surface. 
Following the arguments developed in section 2.11.1, we suppose that the COOPER 
pairs of this internal region are driven by the ions and turn at the speed of the posi-
tive charges v  0 r. 

Considering that by symmetry, the field B(r) is oriented along the axis of rotation 
of the sphere and that the loop can, by continuity and without crossing any singu-
larities, be collapsed to a point, which requires s  0, it follows (from 9.14) 
 mp( 0r)(2 r)  qp  0  (9.36) 

where  is the magnetic flux through the loop. 

Now we take a second concentric circle of radius (r  dr) that, compared to the first, 
has a perimeter enlarged by 2  dr and the flux through it increased by B(r) 2  r dr. 
As the second loop satisfies the same condition as (9.36), 

 mp 0(r  dr) 2 (r  dr)  qp  qpB(r)2 r dr  0.  (9.37) 

Subtracting the two equations and working to first order in dr 

 B(r) 
2mp

qp
0 

2m
e 0  (9.38) 

which is the relation (2.81). It appears naturally that the magnetic field does not 
depend on r and that is therefore uniform inside the rotating sphere at points whose 
distance from the surface is further than the penetration depth. 
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Appendix 9 

Generalized momentum 

A9.1 - Lagrangian and Hamiltonian mechanics 

Notation 

It is usual in Lagrangian mechanics to denote a particle’s velocity v and accelera-
tion  a  and their components by 

 v  r  dr
dt

vx  x  dx
dt

a  r  d2r
dt2 ax  x  d2x

dt2 .  (9.39) 

As Lagrangian mechanics is very general and is used for systems with a large num-
ber of degrees of liberty, we usually find the equations written with generalized 
coordinates and associated velocities denoted q (instead of x) and q. (instead of x.). 

The Lagrangian and the LAGRANGE equations 

The Lagrangian of a particle subject to various potentials is a function L(r, r., t) of 
the variables of position, velocity and time, taken as being independent. The equa-
tion of motion can be derived from the LAGRANGE equations written for each com-
ponent x 

 d
dt

L
x

L
x
 0.  (9.40) 

Lagrangian of a charged particle 

We can easily verify that the Lagrangian of a charged particle in an electromagnet-
ic field 

 
 
L (r,r,t)  1

2
mr2  qrA(r,t) qV (r,t)  (9.41) 

implies, by the LAGRANGE equations, the equation of motion of a charge in an elec-
tromagnetic field, 
 mr  q E(r,t)  v  B(r,t)  (9.42) 

with 
 
B(r,t)   A(r,t) E(r,t)  V (r,t) A(r,t)

t
.  (9.43) 

Momentum of a charged particle 

The momentum component of a particle in the x direction is defined from the  
Lagrangian by 

 px 
L
x

.  (9.44) 

We say that px is the variable conjugate to x. 
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For a charged particle in an electromagnetic field it becomes 
  px  mx  qAx (r,t) or p  mv  qA(r,t).  (9.45) 

The HAMILTON function 

The HAMILTON function is defined by the LEGENDRE transformation of the 
LAGRANGE equation 
 H (r,p,t)  pr L(r,r,t)  (9.46) 

where H is now a function of the independent variables: position r, momentum p 
and time t. Replacing the LAGRANGE equations there are the HAMILTON-JACOBI 
equations 

 dx
dt

 H
px

; dpx
dt

 H
x

. (9.47) 

We can easily check that the HAMILTON function of a particle in an electromagnet-
ic field is 

 
 
H (r,r,t) 

p qA(r,t) 2

2m
 qV (r,t)  (9.48) 

where the first term is the kinetic energy and the second the potential energy 

 

 

Ekin 
1
2

mv2  1
2m

(p qA)2

Epot  qV (r,t).
 (9.49) 

The HAMILTON function thus coincides with the total energy fonction. 

A9.2 - The passage to quantum mechanics 

A few principles 

Quantum mechanics teaches us that to each physical variable corresponds an op-
erator, and that the result of a measurement can only be one of the eigenvalues of 
the operator. 
The correspondence principle associates the momentum component px with the 

operator 
 
p̂x  i x

, and including the other components: 

 momentum p operator p̂ 
i

.  (9.50) 

Momentum and wave vector 

The plane wave (r)  eik r  (9.51) 

is an eigenfunction of the momentum operator with eigenvalue k 
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 p̂eik r 
i

eik r  keik r  (9.52) 

leading to the usual vector relation between the momentum of the particle and the 
wave vector of the associated plane wave 
 p   k. (9.53) 

Hamiltonian of a particle in an electromagnetic field 

Application of the correspondence principle to the HAMILTON function (9.48) leads 
to 8 

 
 
Ĥ  1

2m i
qA(r,t)

i
qA(r,t)  qV (r,t).  (9.54) 

Current density 

By definition, the current density is the quantity j satisfying 

 j vol
t

 0  (9.55) 

where vol  the bulk charge density, is related to the density n of particles and to the 
wave function by 
 vol  q n(r,t)  q (r,t) (r,t).  (9.56) 

Determining vol / t by the SCHRÖDINGER equation, 

 
 
Ĥ  i

t
and Ĥ *  i

*

t
 (9.57) 

we obtain 
 
j  q Re * 1

m i
qA(r,t) .  (9.58) 

A9.3 - Gauges 

The momentum p is an unphysical variable since it is the sum of a physical varia-
ble mv and of the vector potential A, an unphysical variable that depends on the 
choice of gauge. To keep mv invariant, a change of gauge which modifies the vec-
tor potential must be accompanied by a modification in the momentum such that 

  A’  A  (r,t) p’  p  q (r,t)  (9.59) 

and therefore of the wave vector 

 
 
k’  p’  k  q (r,t).  (9.60) 

                                                        
8 Since the operators  and A do not commute, the Hamiltonian is written in the form of 

a product. 
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The plane wave function, for which  k’ must be the eigenvalue associated with the 
new form of the momentum operator, becomes 

 ’(r)  eik’ r  eik r e
iq

 (9.61) 

which does indeed satisfy 

 
i

eik r e
iq (r,t )   k  q (r,t) eik r e

iq (r,t ) .  (9.62) 

The phase   k · r changes to 
 

’  k  q (r,t) r.  

In this way, making a gauge transformation leads us to replace simultaneously A, p 
and  according to the rules imposed by the relations 
  A’  A  (r,t)  

 p’  p  q (r,t)  (9.63) 

 ’   q (r,t).  



Chapter 10 
 

THE JOSEPHSON EFFECT  

The JOSEPHSON effect results from the passage of “particles” COOPER pairs, and 
not of individual electrons, between two superconductors separated by an insulat-
ing barrier (SIS), by a normal metal (SNS), by a simple constriction in the super-
conductor (SCS or “weak link”) or by a ferromagnetic layer (SFS). Each of the 
superconductors, (S1) or (S2), hosts a superconducting condensate whose wave 
function (expression 9.2) possesses its own characteristics: a number of COOPER 
pairs n1(r,t) or n2(r,t) and a phase 1(r,t) or 2(r,t). In the first sections of this  
chapter we will discuss in detail the “standard” case of the SIS junction, where the 
COOPER pairs pass from one of the superconductors to the other by tunneling.  

The more complex SNS junctions will be introduced in section 10.7. The SFS  
junction will be the subject of section 10.8. All these junctions are known as  
“JOSEPHSON junctions.” 

10.1 - JOSEPHSON equations in an SIS junction 

As the thickness of the insulating layer is of order of a nanometer, the wave func-
tion of the COOPER pairs of the superconductor (S1) extends into the superconduc-
tor (S2) and inversely, which leads to a non-zero probability of transfer of COOPER 
pairs from one to the other by the tunnel effect (Fig. 10.1b). 

 
Figure 10.1 - SIS JOSEPHSON Junction 

(a) An SIS JOSEPHSON junction is composed of two superconducting blocks 
(1) and (2) separated by an insulating barrier. Each block is characterized by 
its number of Cooper pairs n1 or n2 and by the phase of its wave function 1 
or 2. (b) The overlap of the evanescent parts of the wave functions of the 
COOPER pairs of each side allows the barrier to be crossed by tunneling. 

© Springer International Publishing AG 2017
P. Mangin and R. Kahn, Superconductivity, 
DOI 10.1007/978-3-319-50527-5_10
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Even though this is a many-body problem (see section 10.9 further on), as a first 
step we will follow the method of FEYNMAN 1 that takes the total wave func-
tion  (t)  as a linear combination of the wave functions of each condensate. 

10.1.1 - The  ionized hydrogen molecule 

Such an approach is classic for a two-state system such as the ionized hydrogen 
molecule H2

, where we are interested in a single particle, the electron, that can be 
“close” to one or other of the two protons. Depending on whether the electron is in 
the neighborhood of proton (1) or of proton (2), the system is to considered to be in 
the state 1  or 2 , the most general state being a linear combination of these two 
states, 
  (t)  c1(t) 1  c2(t) 2 .  (10.1) 

The coefficients c1(t ) and c2(t ) are the probability amplitudes for the presence of 
the electron near protons (1) and (2) respectively (the probabilities are c1(t )2 and 
c2(t )2). Their time evolution obeys the matrix SCHRÖDINGER equation, 

 E1 K
K E2

c1(t)
c2(t)

 i d
dt

c1(t)
c2(t)

 (10.2) 

where E1 is the energy of the electron when it is bound to the isolated proton (1), E2 
its energy when it is bound to proton (2) and K the coupling constant between the 
two states that expresses the probability amplitude  iK/   for the electron to pass 
from one site to the other per unit time. When the molecule is symmetric, as is the 
case for H2

, we obviously have E1  E2. 

10.1.2 - Transfer between superconducting blocks 

As the relevant quantity is no longer the probability of presence of the electron near 
the proton H+ (1) or (2), but the number of COOPER pairs in the blocks (1) or (2), 
we define, by extension, 

 c1(t)  n1(t) ei 1(t ) and c2(t)  n2(t) ei 2 (t )  (10.3) 

where c1(t )2  n1(t) and c2(t )2  n2(t) represent the number of COOPER pairs in 
each block. The wave function is then written 

  (t)  n1(t) ei 1(t ) 1  n2(t) ei 2 (t ) 2  (10.4) 

and the SCHRÖDINGER equation becomes 

 E1
 K

K E2
 

n1(t)  ei 1(t )

n2(t)  ei 2 (t )
 i d

dt
n1(t)  ei 1(t )

n2(t)  ei 2 (t )
.  (10.5) 

                                                        
1 R. FEYNMAN, R. B. LEIGHTON, M. SANDS (1966) The Feynman Lectures in Physics, 

Vol.  III: Quantum Mechanics, Addison-Wesley, Chap. 21. The new Millennium edition 
is available on-line at http://www.feynmanlectures.caltech.edu. 
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In the special case where the superconductors S1 and S2 are identical and connected 
to electric potentials  V/2 and  V/2 respectively, the energy of the COOPER pairs in 
the two isolated block becomes 

 E1  E0 
qpV

2
; E2  E0

qpV
2

 (10.6) 

or, by choosing the zero of energy such that E0  0 

 E1  
qpV

2
; E2 

qpV
2

.  (10.7) 

Substituting these expressions in (10.5) and separating the real and imaginary parts, 
we derive (see App. 10A) the four relations 

 dn1
dt


dn2
dt

 2 K n1n2  sin( 1 2 )  (10.8) 

 
d 1
dt

 K n2
n1

 cos( 1 2 )
qpV
2

 (10.9a) 

 
d 2
dt

 K n1
n2

 cos( 1 2 ) 
qpV
2

 (10.9b) 

that lead to a series of remarkable effects: 
»  the d.c. JOSEPHSON effect when the voltage V is zero, 
»  the a.c. JOSEPHSON effect when the voltage V is constant and non-zero, 
»  the resonant JOSEPHSON effect when, on a constant voltage V, is superposed a 

weak a.c. component v. 

We note that the choice of the zero of energy and that of the symmetric distribution 
of the potential V between the two blocks has no reason other than to simplify the 
calculations. Any other choice would lead to a shift in the global phase, which 
would change none of the final results. 

From now on, the phase difference between the two superconducting blocks will be 
denoted 
 1,2    1  2  (10.10) 

(or just  when there is no ambiguity). 

10.2 - The d.c. JOSEPHSON effect 

10.2.1 - The JOSEPHSON current 

The first equality of the equation (10.8), where dn1/dt and dn2/dt represent the vari-
ations in the number of particles in blocks (1) and (2), maintains the conservation 
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of the total number of COOPER pairs. The current intensity I that flows between the 
superconducting blocks, considered positive when it is from S1 to S2, is given by 

 I  I1 2  qp
dn2
dt

 qp
dn1
dt


2qp K n1(t)n2(t) sin 1,2  (10.11)  

or, if the superconductors are identical and using the fact that the number of 
COOPER pairs transferred is always negligible compared to the total number in each 
solid block, i.e. that n1(t)n2(t) constant  np  

 I 
2qp K np sin 1,2 .  (10.12) 

Even in the absence of a potential difference between the superconducting blocks, 
an electric current called the “JOSEPHSON current” appears with intensity I pro-
portional to the sine of the phase difference between the wave functions of the two 
condensates. When 1,2 is constant, this current is continuous. 

In contrast to a junction between two normal metals, it is no longer the difference 
of potentials that directly controls the tunnel current, but the difference of phases! 

I I

 

Figure 10.2 
The d.c. JOSEPHSON effect 
In the absence of a potential difference (V = 0) but 
with a constant phase difference, a continuous 
current proportional to the sine of the phase differ- 
ence flows between the superconducting blocks. 

Because the sine function has a maximum value of one, the relation (10.12) implies 
a maximum value Ic of the JOSEPHSON current intensity called the  “critical current 
intensity” 2 

 
 
Ic 

2qp Knp 
2e Kns .  (10.13) 

The current intensity through the barrier is then given then by JOSEPHSON’s first 
equation, 
 

 
 I1 2  Ic sin 1,2  Ic sin( 1 2 )  (10.14) 

that is most often likely to be read in the inverse form 

 
 

1,2  sin 1 I1 2
Ic

.  (10.15) 

                                                        
2 np  number of operational COOPER pairs; qp  charge of a pair   2e,  

ns  number of superconducting electrons  2np. 
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If we inject a current of intensity I  Ic across a JOSEPHSON junction, a phase dif-
ference  develops between the condensates on each side of the junction without 
the appearance of any voltage. 
When the injected current exceeds

 
Ic, a voltage difference appears between the 

leads of the junction. Continuity of the superconductivity is broken. 

10.2.2 - Critical intensity of the JOSEPHSON current 

The maximum intensity Ic that can pass a JOSEPHSON junction without generating a 
potential difference is a physical characteristic of the device. 

The AMBEGAOKAR and BARATOFF  relation (SIS junction) 

BCS theory provides a relation between Ic and the resistance R n of the SIS junc-
tion when the two superconductors are in the normal state. AMBEGAOKAR and 
BARATOFF3 showed that, when the two superconductors of an SIS junction are 
identical with gap , at temperature  T  there is the relation 

 R n Ic(T )  (T )
2e

tanh (T )
2kBT

 (10.16) 

and at 0 K,
 

Ic(0)  (0)
2eR n

.  (10.17) 

The experimental results of Figure10.3 show that in agreement with equa-
tion (10.16), Ic decreases with T and vanishes at the critical temperature Tc. 

I

I

 
Figure 10.3 - Temperature dependence of the critical current intensity Ic  

 of an SIS JOSEPHSON junction 
The intensity of the critical JOSEPHSON current decreases with temperature and goes 
to zero at Tc . To the experimental points are added the theoretical curves of 
AMBEGAOKAR and BARATOFF when the superconductors are identical (relation 10.16) or, 
by generalisation of the formula, when they have different gaps. [From AMBEGAOKAR 
and BARATOFF, 1963, © The American Physical Society, with permission].3 

                                                        
3 V. AMBEGAOKAR & A. BARATOFF (1963) Phys. Rev. Lett. 10, 486 & erratum 11, 104. 
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10.3 - The a.c. JOSEPHSON effect 

10.3.1 - The JOSEPHSON frequency 

We now apply a constant potential difference between the two superconductors. By 
subtracting the relation (10.9b) from (10.9a) and taking n1(t)  n2(t), we obtain the 
second JOSEPHSON equation, which defines the time evolution of the phase differ-
ence, that determines the JOSEPHSON current, as a function of the potential V at the 
terminals of the junction, 

 d
dt


qpV  2eV  2 V

0
.  (10.18) 

By integration this leads to (t)  (0)  2eV t  (10.19) 

and, using the relation (10.12), to an alternating current of intensity I and angular 
velocity J given by, 

 
 
I (t)  Ic sin (t)  Ic sin 2eV t  (0)  (10.20) 

with 
 

J 
2eV ; f J 

2eV
h

 (10.21) 

called the JOSEPHSON angular velocity and the JOSEPHSON frequency. Their values 
are close to 3.04 109 s 1 and 483 MHz per V of applied voltage respectively. 

We note that the associated quantum of energy J is none other than the change in 
potential energy 2eV of a COOPER pair as it passes from the superconductor of one 
side of the junction to the other. 

Application of a voltage V to the terminals of a JOSEPHSON junction produces an 
alternating current of frequency  fJ  2eV/h. This is the a.c. JOSEPHSON effect. 

10.3.2 - Application: definition of the standard volt 

A JOSEPHSON junction therefore functions as a frequency-voltage converter, which 
is all the more relevant since frequencies are among the physical quantities that we 
know how to measure with the greatest precision. 

This was why, following the international conference on weights and measures (the 
18th meeting in 1987, resolution 6), the international committee of weights and 
measures recommended: 4 that 483 597.9 GHz/V exactly be adopted as a conven-
tional value, denoted by KJ 90, for the JOSEPHSON constant KJ  2e/h, … that this 
new value be used from this same date (1st January 1990) by all laboratories which 
base their measurements of electromotive force on the JOSEPHSON effect… 

                                                        
4 http://www.bipm.org/en/CIPM/db/1988/1/ 
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10.4 - “Current-voltage” characteristics of an SIS JOSEPHSON junction 

As the first JOSEPHSON equation is non-linear, it is not equivalent to fix the voltage 
and follow the current intensity or to inject current across the JOSEPHSON junction 
and to follow the voltage. Besides, as we shall see later, since the JOSEPHSON junc-
tion cannot be reduced to the single “JOSEPHSON channel,” hysteretic effects can 
occur in a real current-driven JOSEPHSON junction. 

10.4.1 - Voltage-biased JOSEPHSON junction 

Putting aside the technical difficulties that this may involve, biasing a JOSEPHSON 
with voltage leads first to the two effects we have just seen: 
»  d.c. JOSEPHSON effect: at zero voltage, a current I lying between  Ic and  Ic 

that depends on the phase difference between the two bulk superconductors;  
»  a.c. JOSEPHSON effect: at non-zero voltage, an alternating current of very high 

frequency that for a large number of measuring devices averages over time to 
I   0. 

In fact, this description is only accurate at 0 K and only if the voltage V is less than 
a voltage Vg(0)  2 (0)/e called the “gap voltage.” 5 If these conditions are not sat-
isfied it is necessary to add to the JOSEPHSON channel (the components of current 
introduced above) two other channels of current transfer: 
»  a tunnel current IP Q resulting from a transfer of quasi-particles (Q) (see sec-

tion 8.5.3) coming from COOPER pairs (P) which break up at the interface be-
tween the superconductors if V  Vg(T ). This current appears for any tempera-
ture, and in particular at 0 K. With increasing voltage, its intensity very quickly 
approaches the value expected for the tunneling current when the electrodes are 
in their normal state (I  V/R n); 
We note that at 0 K the critical current Ic(0), which was determined by 
AMBEGAOKAR and BARATOFF for an SIS junction (relation 10.17) to be equal to 
[ /4] [Vg(0)/R n], is therefore very close to the normal current (above Tc) when 
the applied voltage equals Vg(0). 

»  a tunnel current IQ Q that occurs at non-zero temperature because of  thermally 
induced break-up of a proportion of the COOPER pairs into quasiparticles. These 
quasiparticles then coexist within each superconductor with the remaining pairs 
and carry a current parallel to that of the pairs. 

These two currents can be clearly identified close to 0 K (Fig. 10.4) where the con-
tribution IQ Q remains weak and grows as Gne /kBT while the contribution IP Q 
increases abruptly at Vg. 

                                                        
5 When the two superconductors are different, Vg  ( 1

 +   2)/e. 
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I

 
Figure 10.4 - Characteristics of an SIS junction linked to a voltage generator at low temperatures 

The time-averaged intensity I  across the junction is the superposition of three components: 
› the d.c. JOSEPHSON effect, that provides an intensity between + Ic and – Ic for V  0, 
› IP Q: the tunneling current of quasiparticles created by the disassociation of COOPER pairs 

at the junction when the potential exceeds Vg  2  /e, 
› IQ Q: the tunnel current of quasiparticles created by the thermal break-up of COOPER pairs 

inside each superconducting block. 
The a.c. JOSEPHSON effect is unobservable because the measuring instrument cannot respond 
to the very high frequencies. 

The distinction between the different contributions becomes, nonetheless, less and 
less clear as the temperature grows, producing a multiplication of quasiparticles 
and a decrease of the gap (Fig. 10.5). 

We should be careful to remember that in most observations, such as in Fig-
ures 10.4 and 10.5, the alternating components are unobservable and the intensity 
shown is  I  averaged over time. This is typically how measured results appear in 
instruments that are unable to resolve the very high frequencies and therefore yield 
time-averaged values. 

10.4.2 - The RCSJ model 

In practice, JOSEPHSON junctions are simultaneously capacitive, since they have 
two superconducting surfaces opposite each other, and resistive, as the quasiparti-
cles provide a “normal” current superimposed on the JOSEPHSON current. The real 
junction then appears as a device with, in parallel, a JOSEPHSON channel J (an ide-
alized JOSEPHSON junction), a capacitor C and a conductance G. This is the RCSJ 
model, an acronym of “Resistively and Capacitively Shunted Junction.” 

In this model, the value chosen for the conductance G must be considered careful-
ly, as near 0 K the natural conductance is weak when V < Vg and it becomes higher, 
very close to 1/R n, for V > Vg (see Fig. 10.4). It is then most accurate to choose for 
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the conductance G a value appropriate to the range of voltages considered. When 
we approach Tc the difficulty lessens since the conductance is close to 1/R n . It is 
also possible, and sometimes necessary for specific applications, to include an ex-
ternal shunt of high conductance (low resistance) that dominates the natural con-
ductance of the junction. 

 
Figure 10.5 - Tunneling current across an Al/Al2O3/Al junction as a function of temperature 6 

When the temperature increases, the density of quasiparticles grows and the gap 
voltage decreases. The two contributions IQ Q and IP Q are no longer independ-
ent, and are more and more difficult to identify separately. For any voltage V, the 
conductance tends towards that of the junction for the normal state. During these 
measurements, the transition temperature of the Al/Al2O3/Al junction has been es-
timated as Tc  1.5 K and the gap voltage at zero temperature Vg(0)  0.42 mV. 

10.4.3 - Equations for the current-biased RCSJ system 

Let I be the total current intensity that is fixed by the generator (Fig. 10.6). It can be 
divided into the superconducting current IJ carried by the COOPER pairs, IG the cur-
rent across the conductance G, and I  the charge current of the capacitor. 

  I  IJ  IG  I .  (10.22) 

                                                        
6 I. GIAEVER & K. MEGERLE (1961) Phys. Rev. 122, 1101. 
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These current intensities are related to the potential and phase differences between 
the electrodes by the expressions 

    
 
IJ  Ic sin (t) ; IG  GV (t) ; I  C dV (t)

dt
; V 

2e
d (t)

dt
 (10.23) 

Substituted into (10.22), they lead to the master equation  

 I (t)  C
2e

d2 (t)
dt2  G

2e
d (t)

dt
 Ic  sin (t)  (10.24) 

which is a non-linear second-order differential equation. 

Figure 10.6 
The RCSJ model of the JOSEPHSON junction 
The JOSEPHSON junction is equivalent to 
three parallel elements: the JOSEPHSON chan-
nel J, the capacitor C, and a conductance G. 

10.4.4 - Mechanical analogy to the RCSJ model 

Although in the general case, the equation (10.24) has no analytical solution, the 
behavior of the junction can be understood quite intuitively thanks to an analogy 
with a rigid pendulum of length L, mass M and moment of inertia Jin, immersed in 
a viscous medium so that with angular velocity , it experiences a frictional torque 

  where  is called the “damping coefficient” (Fig. 10.7). 

 
Figure 10.7 - Mechanical analogy to a JJOSEPHSON junction 

The master equation of the RCSJ model is formally identical to the equation of angu-
lar motion of a rigid pendulum with the correspondences given in Table 10.1. The 
pulley and the bar of length L are rigidly attached.   is the torque applied through 
the force F  and p is that exerted by the weight of the mass M. For convenience,  

p is taken positive when applied clockwise and then the total torque is   p . 



10 - JOSEPHSON EFFECT 253 

When subject to a torque (t) (for example by a force F(t) applied to a rope that 
passes around an attached pulley) the angular position of the pendulum (t) obeys 

 (t)  Jin
d2 (t)

dt2  d (t)
dt

 c  sin (t)  (10.25) 

a relation that with the correspondences written out in detail in Table 10.1, is for-
mally identical to equation (10.24).

 
 

Table 10.1 - Correspondence between the parameters of the JOSEPHSON junction 
and of the equivalent mechanical system 

Mechanical System JOSEPHSON junction 

Applied Torque (t) Imposed Current I(t) 

Angular coordinate  (t) Phase difference (t) 

 Angular velocity (t)  d (t)
dt

 Time derivative 
d (t)

dt
Voltage V (t)  0

2
d (t)

dt

Damping coefficient  Reduced conductance G
2e

 

Moment of inertia Jin  ML2 Reduced capacitance C
2e

 

Critical torque c   MgL Critical current Ic 

Pendulum torque exerted by the weight  
of the mass M as shown in Fig. 10.7 

p(t)  c sin  (t) 
The total torque is (t)- p(t)  

JOSEPHSON current 
IJ(t)  Ic sin  

Frequency of small displacements 

 c

Jin


g
L

 

Plasma frequency 

p 
2eIc

C
 

Inertial parameter 

c 
Jin

2 c  

STEWART-MCCUMBER parameter 

  
c 

2e C
G2

Ic   

Quality factor of the pendulum 

 
Qp 

Jin  ( c )½  

Quality factor 

 
Q  p

C
G

 ( c )½  

Potential energy 
E( )  c (1 cos )  

Energy of the junction 

 
E( ) 

Ic 0

2
(1 cos )  

According to Table 10.1, the behavior of the voltage at the leads of the RCSJ cir-
cuit connected to a generator injecting a current I, is similar to the angular velocity 
of a pendulum of moment of inertia Jin, immersed in a medium producing by vis-
cosity a damping coefficient , under applied torque . We note in particular that 
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the “pendulum torque” p  c sin (t) exerted by the weight of the mass M, as 
shown in figure 10.7, is equivalent to the intensity of the JOSEPHSON current. With 
this sign convention p positive when applied clockwise, the total torque is 

(t)  p(t). 

In the same way that the pendulum’s movement depends on a reduced damping 
coefficient c, the behavior of the junction depends on a reduced parameter called 
the  “STEWART-MCCUMBER parameter” 

 
 

c 
2e C

G2 Ic .  (10.26) 

10.4.5 - Characteristic frequencies 

Of oscillation of the free pendulum 

When both G is very small and I close to 0, i.e.  (t) is small (sin x  x), the master 
equation of the pendulum becomes 

 0  Jin
d2 (t)

dt2  c (t)  (10.27a) 

which is the differential equation of the normal mode of oscillation for very weak 
amplitude at frequency  where 

  c
Jin

 g
L

.  (10.28a) 

Of oscillation of the phase difference between the leads of a junction 

Similarly, when  is very weak and I close to 0, i.e. (t) small, the master equation 
of the junction becomes 

 
 
0  C

2e
d2 (t)

dt2  Ic (t)  (10.27b) 

which is exactly the same differential equation as (10.27a), but now for the oscilla-
tion of the phase difference between the leads of the JOSEPHSON junction. The 
characteristic frequency p of this oscillation is called the “plasma frequency” of 
the junction, 

 
 

p 
2eIc

C
.  (10.28b) 

10.4.6 - Comparison of the response of the mechanical systems and RCSJ  
“biased” by a torque Γ or an intensity I 

Let us look at the comparative responses of the each system when we increase pro-
gressively the applied torque  (for the pendulum) or the injected current I (for the 
junction): 
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Initial state 
Zero torque,   0      Zero current, I  0 

Mechanical system  JOSEPHSON junction 

Zero angle from the vertical   0 Phase difference   0 

Zero angular velocity   0 Voltage V  0 

JOSEPHSON regime  (Fig. 10.7a) 
0    c    0  I  Ic 

Mechanical system JOSEPHSON junction 

Fixed angle 0    /2 Fixed phase difference 0    /2 

Pendulum torque   c sin  Current intensity I  Ic sin  

Zero angular velocity   0 Voltage V  0 

Critical threshold (Fig. 10.7b) 
  c      I  Ic 

Mechanical system JOSEPHSON junction 

Angle   /2 Phase difference   /2 

Critical pendulum torque c Critical current Ic 

Angular velocity   0 Voltage V  0 

Beyond the critical threshold (Fig. 10.7c) 
  c      I  Ic 

Mechanical system JOSEPHSON junction 

When   c , the pendulum starts to ro-
tate like a sling. 

Injecting I  Ic, the phase (t) increases 
indefinitely. 

After each increment of , following a 
transitory period, the system will reach a 
stable regime of rotation where on average  
the damping torque compensates . 

After each increment of I, following a 
transitory period, the system will reach a 
stable regime where on average the cur-
rent though the conductance reaches I. 

The transitional regime (drag) that is seen 
during the rise as well as the descent of  
leads to phenomena of hysteresis. They 
are inexistent for c  0 and become in-
creasingly important when the inertia is 
large and the damping coefficient is small; 
in other words when the value of c is 
high. 

The transitional regime (drag) that is seen 
during the rise as well as the descent leads 
to phenomena of hysteresis. They are in-
existent for c  0 and become increasing-
ly important when the capacitance is large 
and the conductance is small; in other 
words when the value of c is high.  
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Return to below the critical threshold - Hysteresis  

  [0, c]      I  [0, Ic] 

Mechanical system  JOSEPHSON junction 

The torque  is brought back to a value 
less than c The pendulum continues its 
rotation by inertia. The greater the mo-
ment of inertia Jin and the smaller the  
coefficient of resistance, the longer this 
lasts .7 

When the current is returned to a value 
less than Ic, a voltage persists across the 
junction leads. The larger the capaci-
tance C and the smaller the conduct-
ance G, the slower the voltage decreases. 

It will stop rotating and rejoin a point of 
equilibrium for a “retrapping” torque r  
that decreases for increasing values of c

 . 

The voltage returns to zero for a value of I 
that equals a “retrapping” current Ir that 
decreases for increasing values of the pa-
rameter c. 

10.4.7 - Over-damped regime 

In the limit of c  0 (  large, Jin small), equation (10.25) becomes, 

 (t)  c sin (t)
 (10.29a) 

with a direct relation between (t) and (t). 

Similarly, in the limit of c  0 (G large, C small), equation (10.24) becomes, 

 
 
V (t)  I Ic sin (t)

G
 (10.29b) 

with a direct relation between (t) and V(t). 

In each case the effects of hysteresis are smeared; we say that the system is over-
damped. The behavior of the over-damped JOSEPHSON junction can be understood 
qualitatively from the pendulum, in particular beyond the JOSEPHSON regime 
(I  Ic ;   c). 

Angular velocity      Voltage 

Mechanical system JOSEPHSON junction 

From equation (10.29a), the angular ve-
locity is controlled by the difference 
between the applied torque  and the 
torque of the pendulum c

 sin . 

From equation (10.29b), the voltage V is 
controlled by the difference between the 
injected current I and the JOSEPHSON cur-
rent Ic

 sin . 
It varies periodically between a minimum 

value 
min 

c when 

 


2
 (pendulum 

It varies periodically between a minimum 

value 
 
Vmin 

I Ic

G
 when 

 


2
 and a 

                                                        
7 In the limit when there is no friction at all, (neither viscous nor solid), movement will 

continue indefinitely. 
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winding up) 8 and a maximum value 

max 
 c  when 

 
 3

2
 (pendulum 

winding down). 

maximum value Vmax 
I  Ic  

G
 when 

 3
2

.  

It is the sum of a constant component 

 
norm   and a periodic (but non-

sinusoidal) per (t) that varies between 

 c  
 and c  .  

It is the sum of a constant component 

 
Vnorm  I  

G
 and a periodic (but non-

sinusoidal) Vper (t) that varies between 

 


Ic  
G

 and 
 

Ic  
G

.  

Vnorm is the voltage that would appear at 
the leads of the device if the junction were 
normal and characterized only by its con-
ductance G. 

Pendulum period           JOSEPHSON period 

Mechanical system JOSEPHSON junction 

The pendulum spends more time with a 
lower angular velocity when it is being 
wound up, than when it is winding down, 
with higher angular velocity. 

The system spends more time in the inter-
val 0     (where the voltage is weak-
er) than in the interval     2  (where 
the voltage is stronger). 

The period is the time taken for a change 
(this is called a “slip”) of the angle 
by 2 . 

The period is the time taken for a “slip” in 
the phase difference  by 2 .  

T  2  where    is the time-averaged 

angular velocity. 

 TJ 
h

2e V
 is the JOSEPHSON period 

corresponding to the time-averaged volt-
age V  . 

It can be shown that 

 
 

 1 2
c
2  (10.30a)

 

We will show that 

 V  1
G

I 2 Ic
2  (10.30b) 

(see the derivation in App. 10B) 
When  is slightly larger than c , min is 
very small compared to max and the sys-
tem spends much more time in winding up 
than in winding down, which makes the 
curve (t) appear as periodic peaks of 

height 
 
2 c  

 superimposed on min. 

When I is slightly more than Ic the system 
spends much longer between 0     
than between     2 , which makes the 
curve V(t) appear as periodic peaks of 

height 
  
2

Ic  
G

 superimposed on Vmin. 

 

                                                        
8 Note that all the indicated angles are defined modulo 2 , which is not explicitly men-

tioned in order to simplify the text. 
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Pendulum torque           JOSEPHSON current 
Mechanical system JOSEPHSON junction 

The pendulum torque p(t)
 
varies periodi-

cally between  c . It is positive (clock-
wise according to the convention of fig. 10.7) 
in winding up, where the pendulum spends 
more time, than in winding down. 

The JOSEPHSON current IJ (t) varies peri-
odically between  Ic . It is positive for 
0    , where the system spends more 
time, and negative when     2 . 

Its time variation is a periodic series of 
inverted peaks. Its average value p  is 
positive. 

Its time variation is a periodic series of  
inverted peaks. Its average value J  is 
positive. 

When  becomes much greater than c , 
the motion approaches a uniform rotation. 
The period shortens and the relative dif-
ference between min and max is reduced 
(although ( max  min) stays the same) 
and becomes sinusoidal. The average an-
gular velocity tends to 

When I becomes much greater than Ic , 
the relative difference between Vmin 

 
and 

Vmax is reduced (although (Vmax  Vmin) 
stays the same). The period shortens and 
the periodic component of the voltage 
tends to sinusoidal. The average voltage 
tends to 

  /  V  I / G  
Correspondingly, the pendulum torque 
becomes sinusoidal and p  tends to 0. 

Correspondingly the JOSEPHSON current 
becomes sinusoidal and J  tends to 0. 

10.4.8 - Graphical representations 9 

I

I

G H

G H

G H

 
Figure 10.8 - JOSEPHSON current and voltage at the leads  

of the over-damped RCSJ circuit ( c = 0) biased by a  current I > Ic 
(a) The voltage varies periodically. It appears in the form of peaks that are more and more marked 
as the intensity approaches Ic (from above). Vnorm is the voltage that would appear at the leads of 
the device if the junction were normal. (b) The JOSEPHSON current shows inverted peaks and varies 
with the same period betwee n the values + Ic et – Ic.. Its average value IJ is always positive. 

                                                        
9 K.K. LIKHAREV (1986) Dynamics of Josephson Junctions and Circuits,  

Gordon and Breach, Philadelphia, Chap. 4. 
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G H

I

I

G H

 
Figure 10.9 -JOSEPHSON current and voltage at the leads  

of the over-damped RCSJ circuit ( c = 0) driven by a current I  Ic 
The curves of Figure 10.8 have the asymptotic form of a sine wave with increas-
ing frequency. The time-averaged value IJ  of the JOSEPHSON current tends to 0. 

As well as the time variations shown in Figures 10.8 and 10.9, it is instructive to 
consider the dependence of the mean values of intensities IJ and IG and of the po-
tential V on the intensity I of the injected current (Fig. 10.10): 

G H G H

G H

G H

I

G H

G H

I

 
Figure 10.10 - Current-voltage characteristics of the current-biased RCSJ circuit  

in the over-damped regime ( c = 0) 
V  is the time-averaged value of the voltage at the leads of the superconduct-

ing junction with injected current I. Vnorm is the voltage at the junction leads in 
the normal state with the same current, IJ  the time-averaged JOSEPHSON in-
tensity and IG  the time-averaged current intensity across the conductance G. 
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»  for I >> Ic, the JOSEPHSON current becomes quasi-sinusoidal, with an average 
value IJ  which tends to zero. V  rejoins asymptotically the voltage Vnorm that it 
would have with the conductance G alone; 

»   when I approaches Ic , the shift between IJ  and I diminishes. The period be-
comes large and the JOSEPHSON current spends an increasing part of its time near 
 Ic. Simultaneously, the voltage spends increasingly long times close to Vmin . 
The average voltage V develops as a function of the intensity according to the 
relation (10.30b) derived in Appendix 10B; 

»  when I  Ic , the period diverges. The intensity spends an infinite time at  Ic 
and the voltage stays indefinitely at Vmin , that goes to zero. The d.c. JOSEPHSON  
effect is recovered. 

10.4.9 - Weak and intermediate damping 

When the system is no longer over-damped ( c  0), only numerical solution of the 
equation (10.24) provides the variation of average voltage at the leads of the junc-
tion as a function of the current intensity (Fig. 10.11). The analogy with the pendu-
lum allows us, nonetheless, to have a feeling for the behavior of the junction, at 
least in the limit when c is large. 

I

I

G HI

I

I

 
Figure 10.11 - Voltage of return and re-trapping current in an under-damped JOSEPHSON junction 

(a) During the decrease of the biasing current the average voltage decreases, following curves 
that depend on the STEWART-MCCUMBER parameter c . The voltage reaches zero for an intensi-
ty Ir called the re-trapping current. (b) Relative value of the re-trapping current as a function 
of the parameter c . The continuous line corresponds to the exact calculation. The dotted line 
is the result of the calculation made in section 10.4.9, valid when c is sufficiently large. 

Starting with zero applied torque and as long as  is less than c , the pendulum 
adopts an equilibrium position independent of c maintaining   0. When   
becomes larger than c it moves like a sling and accelerates until the average fric-
tional torque becomes equal to . 
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When the torque decreases, the pendulum carried by its momentum, continues to 
swing, even when  becomes smaller than c. It stops rotating only when  attains 
a value r  c such that over one period the work of the torque r equals the work 
of the frictional torque (d /dt)  . This limiting value r is such that the pendu-
lum passes the vertical position with vanishing angular velocity. Between two pas-
sages by this position, the work of the torque r is 2 r and that of the frictional 
torque is d0

2 .  Since in this particular case the sum of the kinetic and potential 
energies is MgL  c we have 

 1
2
Jin

2  c(1 cos ) i.e. 
2 c
Jin

1 cos .  (10.31) 

Equating the work by torque r to the frictional torque over one period, leads us to  

 2 r 
2 c
Jin

1 cos0
2 d  8 c

Jin
 (10.32a) 

or, using the definition of the quality factor of the pendulum Qp (Table 10.1), 

 r 
4
QP

c .  (10.32b) 

By direct transposition, the d.c. JOSEPHSON current or “re-trapping current” that the 
junction takes at zero voltage during the decrease of injected current can be written 

 Ir 
4
Q

Ic or Ir
Ic

 4
c

½.  (10.33) 

10.4.10 - Some examples of SIS junctions 

Figure 10.12 presents schematically a typical JOSEPHSON junction used as a voltage 
standard.10 

 
Figure 10.12 - Schematic image of a typical SIS junction 

It is formed by two superconducting films of width c, that are superimposed for a 
length a over which they are separated by an insulator of thickness d ~ 3 nm. 

                                                        
10 C.A. HAMILTON (2000) Review of Scientific Instruments 71, 3611. 
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A few examples of the orders of magnitude involved, taken for the most typical 
junctions: 
»  Nb/Al2O3/Nb 10 (niobium gap:   1.5 meV) c  30 m and a  18 m 

This junction displays a critical intensity Ic  110 A, or a critical current densi-
ty jc  Ic /ca  20 A cm 2 and a resistance R n of order 20 ; 

»  Al/Al2O3 /Al 11 (aluminum gap:   0.175 meV) d  2 nm 
For a cross-section  2 m2, R n  100   and Ic  2 A. 
For a cross-section  0.02 m2, R n  10 k  and Ic  20 nA. 
So for this type of junction a critical current density jc  200 A cm 2; 

»  Nb/AlOx/Nb 
These junctions can attain critical current densities of the order of jc  1 
to 10 kA cm 2 for cross-sections of a few m2. 

SIS junctions are commonly fabricated by deposition of thin films with critical 
current densities  jc that range from 10 A cm 2 to 10 kA cm 2. The usual required 
critical current densities are typically 12 jc  1 kA cm 2 for applications in electron-
ics, jc  100 A cm 2 for SQUIDs (see Chap. 11) and jc  10 A cm 2 for devices in 
metrology. 

10.5 - Energy stocked in a JOSEPHSON junction (SIS) 

Using the relations (10.14) and (10.18), the work W that a generator connected to 
the leads of a JOSEPHSON junction must provide so that the junction can pass a cur-
rent I = Ic sin  after a time t, starting from zero intensity, is 

  

W  V (t)I (t)dt
0

t


Ic
2e

sin ’d ’
0


Ic
2e

(1 cos ).  (10.34) 

By definition, this work represents the potential energy E( ) stored in the junction. 
From the expression for the quantum of flux 0 

 E( )  EJ (1  cos )  (10.35) 

where EJ, called the “JOSEPHSON energy”, is defined as 

 
 
EJ 

Ic 0
2

.  (10.36) 

This expression inspires several remarks: 
»  the lowest energy state of the JOSEPHSON junction is that for which the phase 

difference  between its leads is zero (   0, I  0); 

                                                        
11 H. COURTOIS, personal communication. 
12 S. ANDERS et al. (2010) European roadmap on superconductive electronics.  

Status and Perspectives, Physica C 470, 2079. 
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»  as the same current injected into the junction can, according to (10.14), give  
rise just as well to the phase difference   1  2 as to the difference 

    ( 1  2) [each being defined modulo 2 ], the phase difference taken will 
be whichever one minimizes the potential energy, i.e., according to (10.35), that 
which lies between  /2 and  /2; 

»  as the potential energy minima for   2n  are separated by barriers of height EJ, 
the junction will be severely perturbed by any energy fluctuation of this order of 
magnitude. Therefore to function correctly at a temperature T, the junction should 
have a current Ic such that EJ  kBT; in reality that means a current more intense 
than 0.04 A K 1. In certain JOSEPHSON diode arrays of high-Tc superconductors 
that function at relatively high temperatures, this criterion makes it necessary to 
have available large currents Ic . 

10.6 -  JOSEPHSON junction subject to an electromagnetic wave 

10.6.1 - Resonance effects 

We come back to an elementary junction reduced to the JOSEPHSON channel  
and superimpose on the constant potential V applied between the two superconduc-
tor blocks a small alternating component v cos( 0t  )  carried, for example, by 
high-frequency electromagnetic wave. 

Following (10.18), the equation for the evolution of the phase difference between 
the two superconductors becomes 

 d
dt

 2eV  2ev cos( 0t  )  (10.37) 

or, after integration over time 

 (t)  2eVt  2e
0

v sin( 0t  )  (0).  (10.38) 

The current intensity through the junction I  Ic
 sin  becomes after applying the 

formula of SCHLÖMILCH13 

 
  

I  Ic ( 1)nJ n
n0

n 2e
0

v sin 2eV  n 0 t  n  (10.39) 

where Jn is the integer BESSEL function of order n. Note that the ± written in the 
arguments of the sine function indicate that there are in fact two terms for each 
non-zero value of n in the summation (see below, Eq. (10.100) and (10.101), for 
more explicit forms). 

This expression makes it apparent that, for an applied voltage V, the current  
intensity is a superposition of sinusoidal components of high frequencies unless  

                                                        
13 See Appendix 10C at the end of this chapter. 
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2eV  n 0  0 , i.e. unless the voltage V takes one of the values Vn where 

 Vn  n 0
2e

(n integer).  (10.40) 

When this condition is satisfied, the frequency of the component n vanishes, which 
means that it carries a constant current that is superimposed on the alternating cur-
rents coming from the other components which, because of their high frequencies, 
are smeared out and averaged to zero in most measurements. As the phase n is 
adjustable, the intensity of this d.c. component can be written 

 In  Ic Jn
2e

0
v sin n  (10.41) 

that can take any value lying between 

 Icn  Ic Jn
2e

0
v and  Icn  Ic Jn

2e
0

v .  (10.42) 

This is, then, an extension of the continuous JOSEPHSON current that is no longer 
seen only at voltage zero, but for a series of characteristic voltages Vn, each with its 
own critical intensity Icn . 

The “ordinary” JOSEPHSON current tension, at V  0 and v   0, appears as the spe-
cial case n  0. As J0(0) equals 1, we obviously recover Ic0  Ic . 

10.6.2 - SHAPIRO steps 

The continuous components can be demonstrated as well in the under-damped  
regime (Fig. 10.13) as in the over-damped regime. In that latter case, a sequence  
of increments called “SHAPIRO steps” appear within a current/voltage curve similar 
to that of Figure 10.10. 

I

 

Under the effect of a component of alternating 
voltage of amplitude v that is superimposed  
on the voltage V, JOSEPHSON currents appear at 
voltages Vn = n 0

 /2e  with amplitudes given 
by the relation (10.42). 

Figure 10.13 - JOSEPHSON  currents and SHAPIRO components in the under-damped regime 

Quantitative confirmation of the results of the preceding calculation was provided 
by GRIMES and SHAPIRO 14 in an experiment that allowed them to measure the am-
plitudes of the steps and to compare them with those of the critical currents Icn 
predicted by the relation (10.41). To do this, they placed a JOSEPHSON junction in a 

                                                        
14 CC. GRIMES & S. SHAPIRO (1968) Phys. Rev. 169, 397. 
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waveguide oscillating at a frequency of 72 GHz and follow the behavior of the  
average voltage at the leads as a function of the injected intensity for different rates 
of attenuation of the wave (Fig. 10.14a). At maximum attenuation, i.e. without any 
high frequency component (v   0), they recover, as expected, a figure like  
Figure 10.10. This fits into the general case, since the values of the BESSEL func-
tion at the origin J0(0)  1 and Jn 1(0)  0, meaning that the limiting JOSEPHSON 
currents are Ic0  Ic and Icn 1(0)  0. With decreasing attenuation and conse-
quently increasing v, “SHAPIRO steps” appear at voltages Vn independent of the 
amplitude v and in exact agreement with the values predicted by the rela-
tion (10.40). Looking at the heights of the steps (Fig. 10.14a) it is apparent that: 
»  Ic0, which has its maximum at v  0, decreases to 0 at around  34 db, then 

grows to a maximum close to   31 db and vanishes again towards  28 db; 
»  Ic1, which vanishes for maximum attenuation (v  0), has a maximum near 

 37 db, returns to 0 close to  29 db after which it increases again; 
»  Ic2, which vanishes for maximum attenuation has a maximum at  34 db and 

then vanishes again near  29 db. 

J

J

J

J

 
Figure 10.14 - SHAPIRO steps measured on a point contact Nb-Nb JOSEPHSON junction  

in the over-damped regime  
(a) Voltage-current curves obtained at 4.2 K on a junction exposed to an electro-
magnetic wave of frequency 72 GHz for different degrees of attenuation. The curves 
have been shifted vertically for clarity. [Curves adapted from Reference 14] 
(b) BESSEL functions J0 , J1 and J2 for which we note the attenuations correspond-
ing to maxima and minima of the steps situated at V0 , V1 , V2 of part (a) of the figure. 

On Figure 10.14b showing the dependence of the first three BESSEL functions as a 

function of v , we have marked the rates of attenuation where the 
 

J n
2e

0
v  are 

extremal or vanishing. Examination of the figure shows that the changes in the Icn 
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are in agreement, at least qualitatively, with the relation (10.41). A more detailed 
analysis of the step heights is presented in the article of GRIMES and SHAPIRO. 

10.7 - SNS junctions 

The mechanisms by which currents pass with the direct or indirect transfer of 
COOPER pairs from one superconducting electrode to the other across a normal 
metal or a constriction constitute a problem that has been, and continues to be, the 
object of numerous studies.15 There are many parameters: the length and width of 
the junction, the mean free path of electrons in the normal metal, the coherence 
length in each of the superconductors… 

After presenting two models among the many that have been imagined to evaluate 
the JOSEPHSON current, a few other types of junction will be examined. The general 
characteristics and the signature of the JOSEPHSON effect will be pointed out from 
these examples. 

10.7.1 - Proximity effect, the ASLAMAZOV-LARKIN model 

In the first model, that was proposed by DE GENNES,16 it was assumed that, by a 
proximity effect, the COOPER pairs diffuse into the normal metal over a distance of 

order of N
vF

kTc
 that can reach 10 to 1000 nm. When the thickness of the layer 

separating the superconductors is less than this distance (see Fig. 10.1), there is 
continuity of the superconductivity across the normal layer between S1 and S2 each 
characterized by its own wave function 1  n1ei 1  and 2  n2ei 2 .  The ASLA-
MAZOV-LARKIN model 17 relying on arguments founded on GINZBURG-LANDAU 
theory, leads us to express the wave function in the normal layer N in the form, 

 (x)  F(x) n1ei 1  1 F(x)  n2ei 2  (10.43) 

where F(x) is a weighting function between 1 and 2 taking values 1 and 0 at the 
interfaces S1/N and N/S2 respectively. The current density can be deduced from the 
relation (9.6), that in the absence of a magnetic field (A  0) and in one dimension 
becomes  

 j 
qp

mp
Im

x
 (10.44) 

                                                        
15 K.K. LIKHAREV (1979) Reviews of Modern Physics 51,101; 

A.A. GOBULOV, M. Yu. KUPRIYANOV & E. LL’ICHEV (1964)  
Reviews of Modern Physics 76,411. 

16 P.G. DE GENNES (1964) Superconductivity of Metal and Alloys,  
Benjamin, New York, 234.  

17 L.G. ASLAMAZOV & A.I. LARKIN (1969) Zh. Eksp.Teor. Fiz. Pis’Red. 9, 150; 
(1969) JETP Lett. 9, 87. 
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or, using the expression for  in (10.43), 

 j 
0 Lqp

sin( 1 2 )  (10.45) 

which is precisely the first JOSEPHSON equation. 

In this  model, when T is close to Tc , we obtain 

 IcR n  4

2

ekBT
 (10.46) 

which is the limit for   0 of the relation (10.16) relating the superconducting 
current to the gap in the model of AMBEGAOKAR and BARATOFF18 (see sec-
tion 10.2.2). 

As this model recovers the JOSEPHSON equation and the results of AMBEGAOKAR 
and BARATOFF we might think that the mechanism is general. The following sec-
tion shows that this is not the case. 

10.7.2 - JOSEPHSON current via the ANDREEV levels 

Quasiparticles 

When the layer separating the two superconducting electrodes itself contains 
charge carriers (i.e. is a normal metal) we can imagine a quite different mechanism 
of transferring COOPER pairs involving quasiparticles. To introduce this mecha-
nism, we first re-examine what the quasiparticles are in each material: 
»  In the normal metal: as we discussed in section 8.5.3, the quasiparticles of the 

normal metal are of electron or hole character. In the immediate neighborhood of 
the FERMI level the quasiparticles that are “symmetric” with respect to the FERMI 
level k kF  kF k  (k  kF   and  k  kF )  have the same energy in the ex-
pansion of the relation 8.84a 

 
 
Ek

n 
vF
2

(k k ). (10.47) 

As the normal metal possesses a continuum of energy levels and there is no gap, 
Ek

n can be arbitrarily small. 
»  In the superconducting state: the quasiparticles of the superconductors are elec-

tron- or hole-like and appear as electrons with probability uk
2  and as holes with 

probability vk
2 (see section 8.5.3). In contrast to the normal metal, their minimum 

energy is that of the gap, which means that the superconductor has no quasiparti-
cle energies less than . 

                                                        
18 The ASLAMAZOV-LARKIN model was actually constructed by supposing a transition 

between the gaps (x)  F(x) ei 1 + [1  F(x)] ei 2 and in applying a relation for the 
current density with a form analogous to (9.6), where  is replaced by . It can be 
shown that these two procedures are equivalent. 
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ANDREEV-SAINT JAMES reflections 

We consider, in the normal metal layer, an electron (quasiparticle) of wave vec-
tor k and of energy Ek

n less than the gap  of the neighboring bulk superconduc-
tors, that moves towards S2. When it has arrived at the N/S2 interface, it cannot find 
available states in the superconductor to occupy since the quasiparticle states all 
have energies greater than . 

If it were an ordinary potential barrier, the electron would be simply reflected but, 
as the barrier is a superconductor, it is partly reflected as an electron and partly as a 
hole. With non-zero probability it is reflected in the form of hole quasiparticle, of 
wave vector k < kF and of the same energy, that moves towards the N/S1. By 
charge conservation this reflection is accompanied by the creation of a COOPER 
pair in S2. This is what is called an “ANDREEV-SAINT JAMES reflection” 
(Fig. 10.15a).19 

 
Figure 10.15 - ANDREEV reflections in an SNS junction 

The reflection of an electron in the form of a hole at the N/S interface is accompanied by the crea-
tion of a COOPER pair in the superconductor, while the reflection of a hole in the form of an electron 
is accompanied by the destruction of a COOPER pair. It follows that there is a net transfer of COOPER 
pairs between the superconducting electrodes that can be from S1 to S2 (a) or from S2 to S1 (b) 
according the direction of movement of the electrons and holes in the normal region. 

When this hole arrives at the N/S1 interface, by the same reasoning that its energy 
is less than the gap in S1, there is a non-zero probability for it to be reflected in the 
form of an electron of wave vector k which returns towards the N/S2 interface. 
Charge conservation is maintained by the annihilation of a COOPER pair in S1. In 
this way the net result of a roundtrip in N of a quasiparticle, which is an electron in 
the direction S1  S2 then a hole in the direction S2  S1, is a transfer of a 
COOPER pair from S1 to S2 (Fig. 10.15a). In the inverse process, a round trip in N of 
a quasiparticle which is an electron in the direction S2  S1, then a hole in the  

                                                        
19 A.F. ANDREEV (1964), Zh. Eksp. Teor. Fiz. 46, 1823 [(1964) Sov. Phys. JETP 19, 1228]; 
 D. SAINT JAMES (1964), Le Journal de Physique 25, 899. 
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direction S1  S2, translates into the transfer of a COOPER pair from S2 to S1 
(Fig. 10.15b). 

ANDREEV levels 

In such a device the normal layer also behaves like a resonant cavity of length dN in 
which a wave of wave vector k (associated with an electron) reflects into a wave 
of wave vector  k  (associated with a hole, giving the sign change of the wave 
vector) which is once again reflected into a wave (an electron) of wave vector k… 
The dephasing accumulated during this round trip is dN

 [k  (  k)]. To this 
dephasing we must add two others: 
»  the first is produced at any reflection, irrespective of the nature of the incident 

particle. For a reflection it equals 

 k  cos 1 Ek
n

;  (10.48)  

»  the second is special to the reflection at an N/S interface: reflection of an electron 
in the form of a hole, at the interface with a superconductor of condensate 
phase , is accompanied by a dephasing of   while reflection of a hole in the 
form of an electron, at the interface of a superconductor of condensate phase , is 
accompanied by a dephasing of  . 

These constant motions back and forth, that lead to transfers of COOPER pairs be-
tween S1 and S2, will only be effective if there is constructive interference in the 
normal layer, i.e. if one round trip gives a net dephasing of 2 , which will only 
happen for special pairs of wave vectors (k , k ) and thus special energy levels 
that are called the ANDREEV levels. 

The levels  that provide the transfer of COOPER pairs from S1 to S2 (Fig. 10.15a) 
satisfy the phase relation: 
Dephasing (k   k ) dN  2   2  1      (10.49a) 
Origin of the dephasing  1   2     3     4     5 
1: path taken, 2: ordinary reflection, 3: electron-hole reflection at the N/S2 inter-
face, 4: hole-electron reflection at the N/S1 interface, 5: interference condition. 
According to the relation (10.47), their energies are 

 E  
vF

2dN
(2  2 ).  (10.49b) 

Those that lead to a transfer of COOPER pairs from S2 towards S1 (Fig. 10.15b), 
differ from the previous by reversal of the direction of movement of the holes and 
electrons, and by the nature of the reflections on each of the superconductors. They 
satisfy the phase relation: 
Dephasing (k   k ) dN  2   1  2      (10.50a) 
Origin of the dephasing 1   2     3     4     5 
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This gives ANDREEV levels at energies 

 E 
vF

2dN
(2  2  ).  (10.50b) 

Thus the levels providing the transfer of COOPER pairs from S1 to S2 are separated 
in energy from those providing transfer from S2 to S1. 

JOSEPHSON current 

The current intensity transported by each level then depends on its occupation 
probability, given by the FERMI function, that in turn depends on the temperature. 
The JOSEPHSON current will be the sum of the currents (with appropriate signs) 
carried by each level:  
»  if   0, the levels E  and E  are degenerate and equally occupied; there is a 

cancellation of the the transfer of COOPER pairs from S1 to S2 and from S2 to S1. 
No net current crosses the junction; 

»  if 0    , the degeneracy is lifted and E   E ; the levels E  are systemati-
cally more occupied than the levels E  and a net current flows from S1 to S2; 

»  if      0, E   E ; the rates of occupation are reversed and the JOSEPHSON 
current flows in the opposite direction, i.e. from S2 to S1. 

A full expression for the JOSEPHSON current requires calculations such as those of 
GUNSENHEIMER et al.,20 who found the curves of Figure 10.16. There we see that 
I( ) oscillates around zero (with period 2  but is not sinusoidal, although it be-
comes so when we approach Tc . 

The decrease of Ic(T) with temperature (Fig. 10.17) is relatively far from the pre-
diction of the model of AMBEGAOKAR and BARATOFF. 

I

I
Figure 10.17 
Maximum JOSEPHSON current densities 
via the ANDREEV levels of an SNS junction 
The calculations were made on models 
for Nb/N/Nb junctions of different 
lengths. The critical current densities are 
normalized to their values at 0 K, and 
range from 4.69 107 A cm 2 for the short-
est, to 4.01 108 A cm 2 for the longest. 
The curves Ic(T ) show very different 
behavior from those observed for SIS 
junctions, except for the thinnest, where 
they are similar. [From GUNSENHEIMER, 
SCHÜSSLER & KÜMMEL, 1994, © The American 
Physical Society, with permission] 20 

                                                        
20 U. GUNSENHEIMER, U. SCHÜSSLER & R. KÜMMEL (1994) Phys. Rev. B 49, 6111. 
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I

 
Figure 10.16 - JOSEPHSON current I( ) via the ANDREEV levels in an SNS junction 

The calculation was made on a model Nb/N/Nb junction of length dN = 150 nm. The cur-
rent intensity Ic has been normalized to its highest value at 0 K. I( ) evolves from a saw-
tooth curve at 0 K towards a sinusoidal form at higher temperatures. [From GUNSENHEIMER, 
SCHÜSSLER & KÜMMEL, 1994, © The American Physical Society, with permission] 20 

10.7.3 - Examples of SNS junctions 

An analysis of the properties of many types of SNS junctions can be found in sev-
eral review articles.21,22 They differ from SIS junctions, where the thickness of the 
insulator is a few nm, in that the distance separating the superconducting electrodes 
is generally from 0.1 to 10 m. 

The behavior of junctions depends not only on their dimensions, but also on pa-
rameters such as the mean free path of the electrons, that can be greater or less than 
the distance between the superconducting electrodes. The resistance R n is generally 
of the order of an ohm or a milliohm and in so far as the superconducting films are 
not opposite each other, the capacitance of the junction remains insignificant, 
which makes us expect over-damped junctions.23 

                                                        
21 K. LIKHAREV(1979) Rev of Mod. Phys. 51,101. 
22 A.A. GOLUBOV, M. YU. KUPRIYANOV & E. LL’ICHEV (2004) Rev. of Mod. Phys. 76, 411. 
23 In spite of this, retrapping currents different from Ic are still observed in certain sys-

tems; see H. COURTOIS et al. (2008) Phys. Rev. Lett. 101, 067002. 
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Methods of fabrication have evolved with micro-etching techniques; as an example 
Figure 10.18 shows an SNS junction obtained by a method of “shadow deposi-
tion.” 24 

Figure 10.18 
Nb/Cu/Nb junction 
Junction obtained by deposition at different 
incident angles with a suspended mask. The 
technique inherently produces some replicas 
as well as the Nb/Cu/Nb junction, but being 
disconnected from the sample they are of no 
consequence. [From DUBOS et al., 2001, © The 
American Physical Society, with permission] 25

 

To obtain this structure, DUBOS et al. 25 constructed a silicon mask suspended at a 
distance of 0.57 m from the substrate (Fig. 10.19a), then deposited, at appropriate 
angles (Figs. 10.19b and 19c), 100 nm of copper, and then 200 nm of niobium. The 
widths of the bands of copper and niobium were 600 nm and 800 nm respectively.  

Figure 10.19 - Shadow deposition 
(a) The mask used; h  850 nm (b) Deposition of copper (c) Deposition of niobium. 
The silicon mask is maintained at 0.57 m from the substrate by an etched layer of 
PES. [From  DUBOS et al., 2001, © The American Physical Society, with permission] 25 

                                                        
24 P. DUBOS (2000) Transport électronique dans des nanojonctions supraconducteur -

métal normal - supraconducteur, (Electronic transport in superconductor-normal-
superconductor junctions) Thesis, in French, Université Joseph Fourier, Grenoble. 
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To ensure the contact between metals, the niobium covered the copper at each of its 
extremities over a distance of 150 nm. Typically, when the distance between the 
niobium electrodes was 500 nm, a resistance R n  0.20  and a critical current 
Ic  1.2 mA  were found.25 

10.7.4 - Signature of the JOSEPHSON effect  

As well as the two model SNS junctions presented, very many others, sometimes 
with complex geometries, have been, and continue to be, developed and compared 
to experiment. The behavior varies from model to model and the following ques-
tion arises: what is the signature of a JOSEPHSON current? LIKHAREV,21 followed 
by GOLUBOV,22  proposed that the current that flows between two bulk supercon-
ductors should be considered to be of JOSEPHSON type if:  
› it flows between two electrodes only because of a phase difference , 
› it is periodic: I( )  I(    ), 
› it is antisymmetric: I( )   I( ); although this condition may not be fulfilled in 

certain cases of coupling between superconductors where the pairing is of uncon-
ventional symmetry, 

› it is zero for   , 
› as a consequence of the previous conditions, it can be written as a series 26 
 I ( )  In

n 1
sin(n )  (10.51) 

› the phase is related to the potential difference at the leads of the junction by 

 d
dt

 2 e V  (10.52) 

that is insensitive to the details of the model as it involves only universal con-
stants. 

Remark - We note that when the relation (10.14) is no longer satisfied, the current-
voltage characteristics of the RCSJ model in the over-damped regime depart from 

the relation (10.30b), 
  
V  1

G
I 2 Ic

2 , as the example of Figure 10.20 shows. 

10.8 - -type JOSEPHSON junctions 

10.8.1 - Definition and energy 

A  (“pi”) junction is one for which the intensity of the JOSEPHSON current is relat-
ed to the phase difference between the two superconductors by 

 
 
I1 2  Ic sin( 1 2 )  Ic sin(  ).  (10.53) 

                                                        
25 P. DUBOS et al. (2001) Phys. Rev. B 63, 064502 and 87, 206801. 
26 In this sense the sin  relation for SIS junctions, or for the limiting cases of SNS or SCS 

junctions, is only a particular case of a JOSEPHSON junction. 
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Figure 10.20 - Example of current-voltage characteristics of an SNS junction27 

Curves derived from measurements on a Nb/Cu/Nb sample of length 710 nm, 
width 580 nm and thickness 100 nm. The junction is diffusive with a diffusion 
coefficient of the electrons in the normal metal of 250 cm2 s . The dashed 
curve is the resistance of the junction in the normal state and, in dots, the 
predicted characteristics at 5 K by the RCSJ model in the over-damped regime. 

It is so named because of the term  that is added to the difference  between the 
phases of the two superconductors in the expression for the JOSEPHSON current. In 
contrast, and when it will be useful, we will describe as being “of type zero” the 
junctions described in section 10.2. If it is not made precise, a junction is implicitly 
of type zero. 

Proceeding as in section 10.5, we easily calculate that the energy stocked in the  
junction is  
 E ( )  EJ 1 cos(  )  EJ 1 cos .  (10.54) 

In contrast to the zero junction whose energy is a minimum for   0, the energy 
minima of the  junction are situated at     and are separated by a potential 
barrier of height 2EJ whose summit corresponds to an unstable equilibrium at   0 
(Fig. 10.21). 

                                                        
27 P. DUBOS, H. COURTOIS, O. BUISSON & B. PANNETIER (2001)  

Phys. Rev. Lett. 87, 206801. 
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Figure 10.21 - Energy stored in junctions of type zero (a) and  (b)  

as a function of the phase difference  between their leads  

As a result the junction is bi-stable: at zero current it can be equally be in one  
or other of the two minima. For an injected current I, the junction chooses the 
phase difference closest to  . 

10.8.2 - Families of JOSEPHSON  junctions 

The type of a JOSEPHSON junction, zero or , is an intrinsic property of the combi-
nation of materials that form the junction. We now know several families of 
junctions: 

»  junctions between two superconducting grains of a cuprate (HTS superconductor) 
oriented in a particular way. Since the superconductivity of the cuprates is carried 
by dx2  y2

 orbitals, a junction that places the positive lobes of one superconductor 
directly opposite the negative lobes of the other, is of  type; 

»  certain junctions made of carbon nanotubes connecting two superconductors; 28 
»  some junctions where a layer, or one of several layers, separating the supercon-

ductors is ferromagnetic: 

Superconductor / Ferromagnet / Superconductor (SFS) 
Superconductor / Insulator / Ferromagnet / Superconductor (SIFS) 

Superconductor / Insulator / Ferromagnet / Insulator / Superconductor (SIFIS) 

                                                        
28 J.-P. CLEUZIOU, W. WERNSDORFER, V. BOUCHIAT, T. ONDARCUHU & M. MONTHIOUX  

(2006) Nature Nanotech. 1, 53-59. 
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10.8.3 - SFS junctions: mechanisms of  junctions 

We consider separately from all others, two electrons of a COOPER pair within the 
first superconductor S1 that occupy the two states |k  ( kF) and |  k  (  kF) situat-
ed at the front and rear of the FERMI surface, respectively (Fig. 10.22a). 

 
Figure 10.22 - COOPER pair crossing a ferromagnetic material 29 

(a) When the electron in state |k  is at the front of the FERMI sphere ( kF) and the electron in state 
|k  at the back, each of them sees its wave vector increase by Qex /2 when entering the ferromag-
netic material. (b) In the inverse situation their wave vectors decrease by the same amount. 

When penetrating the ferromagnetic material, where there is an internal magnetic 
field Bi present, the electron in state |k  acquires, because of its spin , a potential 
energy  BBi ( B is the BOHR magneton) while the electron in state |  k  see its 
potential energy become  BBi . To respect the conservation of its total energy, 
each electron modifies its kinetic energy by changing its wave vector by an amount 
Q1 for the first electron and Q2 for the second, with respectively: 

 

1
2m

2(kF  Q1)2
BBi 

2

2m
kF

2

1
2m

2( kF  Q2 )2  BBi 
2

2m
( kF )2

 (10.55) 

                                                        
29 E.A. DEMLER, G.B. ARNOLD & M.R. BEASLEY (1997) Phys. Rev. B 55, 15174. 
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with, given that Q1 and Q2  kF, 

 
 
2Q1  2Q2  Qex 

2 BBi
vF


2Eex

vF
 (10.56) 

where 2Eex is the exchange energy, i.e. the change in magnetic energy when the 
spin is reversed. 

As each electron has its momentum increase by (Qex/2), the COOPER pair, whose 
initial momentum is zero, gains momentum Qex and its wave function acquires a 
wave vector Qex, which, when it travels a distance d in the ferromagnetic layer 
modifies its phase by an amount Qexd. Starting from 1 at the S1/F interface, the 
phase of the COOPER pairs coming from S1 becomes 1  Qexd at the F/S2 interface. 
If we imagine (Fig. 10.23) introducing a very fine insulating layer between F  
and S2 , the first JOSEPHSON equation across this virtual layer is written 
I  Ic sin( 1  Qexd  2). In the special case of Qexd  , or d  h F/4Eex, this leads 
to I  Ic sin( 1,2  ), i.e. the form of the JOSEPHSON effect of a  junction 
To be more precise, the wave function associated with the COOPER pair coming 
from S1 is the product of wave function of the two electrons, or 

 e
iQex

2
x1e

iQex
2

x2  eiQexx  
where x  (x1  x2)/2 is the position of the center of gravity of the pair, x1 is that of 
the electron whose wave vector k  is in the front of the Fermi sphere and x2 the 
electron of wave vector  k  situated at the back (Fig. 10.22a). 

Now as it includes two electrons, the wave function of the COOPER pair must 
change sign under exchange of particles and, since it is a spin singlet, it must be the 
direct product of the antisymmetric spin wave function YAS  and a symmetric or-
bital function S. 

Exchange of the particles leads to the configuration of Figure 10.22b and places the 
electron in state |  k

 

to the front of the FERMI sphere and those in state |k  to the 
back.29 In this new situation and following the preceding reasoning, we find that 
each electron sees its wave vector change by  Qex since: 

 

1
2m

2 kF
Qex

2

2

 BBi 
2

2m
kF

2

1
2m

2 kF
Qex

2

2

BBi 
2

2m
( kF )2

 (10.57) 

which means that the wave function associated with this new configuration is 
e iQexx . The total wave function, antisymmetric in spin and symmetric in 
orbital coordinates is then 

  S AS  (eiQexx  e iQexx )
2

.  (10.58) 
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This means that in the ferromagnetic layer the wave function f is 1 multiplied  
by a factor cos(Qexx), to which it is natural to add a damping term e x/ f that has  
no effect on the phase. Therefore by following a simple argument, the insulating 
layer I of an SFIS junction situated at a distance d from the S1/F interface has on its 
two sides wave functions f (d)  n1 cos(Qexd)ei 1e d / f  and 2  n2ei 2 , lead-
ing to a JOSEPHSON current of intensity  

 
 
I Ic(d  0)e

d
f cos(Qexd)sin( 1 2 )  Ic(d)sin( 1 2 ).  (10.59) 

This predicts that with varying d, depending on the sign of cos(Qex d), there will be 
alternating zero and  junctions. The fact that Ic passes by zero and local maxima 
was one of the first clues to this alternation. Confirmation will come from SQUID 
with  junctions (see section 11.4). 

 
Figure 10.23 - SFIS model of of JOSEPHSON junctions of types 0 and  

The wave function 1 of the condensate of S1 extends into the ferromagnetic layer F as an 
oscillating function f (x)  1e x / f cos(Qex x) . At the F/I interface and depending on the 
value of d, f(d) has either the same sign as 1 (a) or the opposite sign (b). The dephasing 
between the decaying waves that overlap in I is either the same as that between 1 and 2 
(a), and the junction is 0 type, or it is of the opposite sign, (b), and the junction is  type. 

Numerous experiments have provided evidence for this phenomenon. For example 
Figure 10.24a shows the results of measurements of the critical currents Ic for 
Nb/Al/Al2O3/PdNi/Nb junctions as a function of the thickness d of the ferro-
magnetic PdNi layer. The change in the nature of the junction (0 to ) is signaled 
by the fall to zero of Ic for d  6.5 nm. Figure 10.24b shows for the system 
Nb/Cu52Ni48/Nb that the temperature – by acting on the internal field Bi , the  
exchange energy Eex and, ultimately, on the periodicity of the oscillating factor 
cos(Qx) – can change the nature of the junction. 

An equivalent, and certainly more physical result, can be found by considering that 
the current is not directly carried across the ferromagnetic layer by COOPER pairs, 
whose electrons move in opposite directions ( kF et  kF) and with opposite spins, 
but, as in Figure 10.15, by electrons and ANDREEV holes that also move in opposite 
directions with opposite spins. We no longer need to consider a fictitious insulating 
layer, the factor cos(Qexd) representing simply the standing wave associated with 
electron-hole reflections in the ferromagnetic layer. 
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I I

 
Figure 10.24 - Junction with a ferromagnetic barrier  

Evidence for change between a junction of 0 type and of  type  
(a) In a Nb/Al/Al2O3/PdNi/Nb junction as a function of the thickness d of the PdNi layer. The fall to 
zero of the maximum current around d = 6.5 nm is the signature of the change in type from 0 to . 
[From KONTOS et al., 2002, © The American Physical Society, with permission].30 
(b) In a Nb/Cu52Ni48/Nb junction as a function of the temperature T for two thicknesses of the 
ferromagnetic layer: the effect of the temperature is to modify the internal magnetic field and thus 
the wave vector Qex. [From SELLIER et al., 2004, © The American Physical Society, with permission] 31 

The mechanism is nonetheless different depending on whether the exchange energy 
Eex is larger or smaller than the superconducting gap . 

When Eex   the ANDREEV levels are “eliminated” and the simple model pre-
sented above is justified. 

The case Eex   can be treated as a simple perturbation to the ANDREEV levels 
described in section 10.7.2. If we include the exchange energy of the spins, these 
levels are not doubled, but quadrupled since the electron quasiparticles can move to 
the left or the right with either spin  or spin , giving four stationary waves. The 
dominant stationary wave depends on the value of d. It determines the direction of 
transport of the COOPER pairs: from S1 to S2 or from S2 to S1. 

10.9 - JOSEPHSON junction: a system with many states 

10.9.1 - Electron on a chain of atoms 

The aim of this section is to show that the JOSEPHSON effect, that was treated artifi-
cially in section 10.1 starting from a two-state system, actually involves a large 
number of states, and can be compared to an electron that moves on a linear chain 
of atoms. 
                                                        
30 T. KONTOS et al. (2002) Phys. Rev. Lett. 89, 137007. 
31 H. SELLIER et al. (2004) Phys. Rev. Lett. 92, 257005. 
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We consider, then, a linear chain of atoms with lattice parameter b and an electron 
that can be on any atom of the chain. We call n  the state of the system when the 
electron is on the atom at xn  nb.  In the general case, the state   of the system is 
a linear superposition of states n , 
  cn

n
n  (10.60) 

where cn is the probability amplitude of finding the electron on atom n. The dynam-
ics of an electron on an atomic chain is a classic problem in quantum mechanics 
that has been analyzed in detail in many texts.32 We recall that the coefficients cn 
obey the SCHRÖDINGER equation: 

 i dcn
dt

 E0 cn Acn1 Acn 1  (10.61) 

where E0 is the energy of an electron on an isolated atom and iA/  is the probabil-
ity amplitude that the electron jumps onto a neighboring site during a unit interval 
of time, i.e. the probability amplitude for the system to pass from the state n  to 
states n  1  or n  1  (Fig. 10.25). 

 
Figure 10.25 - One-electron system on chain of atoms in the state  n  

The system is in the state n  if the electron is localized near the atom n. The coefficient A repre-
sents the probability amplitude for the system in state n  to pass to one of the “neighboring” 
states n  1  or n  1 , i.e. for the electron to jump from the atom to one of its nearest neighbors. 

The solutions of (10.61) are 

 cn(k,t)  an(k)e
i Ek t

with an(k)  eikxn

Ek  E0 2A cos(kb)
 (10.62) 

giving the time dependence 

 (t)  ck (0)e
i Ek t

k
k

 (10.63) 

where the states k  and n  are related by the FOURIER relations: 

 k  eik xn n
n

and n  e ik xn k
k

.  (10.64) 

                                                        
32 For example, R. FEYNMAN, R. B. LEIGHTON, M. SANDS (1966) The Feynman Lectures in 

Physics, Vol. III: Quantum Mechanics, Addison-Wesley, New York, Chap. 13. The new 
Millennium edition is available on-line at http://www.feynmanlectures.caltech.edu. 
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A state k  is a coherent superposition of states n  with coefficients ei k xn
 of unit 

modulus, whose phase increases by kb when we pass from state n  to state n  1 . 

Passing to the continuous limit in the relation (10.63),  (t)  appears as a wave 
packet making the variables p  k and x  nb canonically conjugate variables. The 
electron is described by a wave packet with 
 p x or k x 1 (10.65) 

 k and  x are the widths of the spread of the wave vector and position around their 
mean values k  and x . 

In a semi-classical approach, the velocity of motion of the particle is given by the 
group velocity, 

 
 
vG  dx

dt
 1 E

k
 (10.66) 

and a force F  E / x , due to a change of the energy with the position of the 
particle, for example in presence of an electric field, induces a change in momen-
tum F  dp/dt , implying 

 dp
dt

 dk
dt

 E
x

.  (10.67) 

These equalities constitute the HAMILTON-JACOBI equations. 

10.9.2 - Generalization 

We can rewrite the relations (10.66) by substituting for the variables x and k, the 
variables n  x/b and   kb. The states   replace the states k  and we have: 

 an  ein and E( )  E0 2Acos . (10.68) 

The HEISENBERG uncertainty relation takes the form 
  n 1  (10.69) 

and the HAMILTON-JACOBI relations are written 

 dn
dt

 1 E d
dt

 1 E
n

.  (10.70) 

If, in addition, we consider that the states   form a quasi-continuum, the FOURIER 
relations (10.64) become 

  ein n
n

; n  1
2

d e in
0
2 .  (10.71) 

10.9.3 - Application to the JOSEPHSON effect 

We consider N COOPER pairs shared between the two bulk superconducting 
blocks (1) and (2) separated by a potential barrier. At a given time, they number n1 
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on block (1) and n2 on block (2). The state n  is characterized by the single varia-
ble n defined such that 
 n1   (N/2)  n    and    n2    (N/2) – n (10.72) 

The most general state of the BOSE-EINSTEIN condensate can be written as a coher-
ent superposition of these states 
 

 
 cn n

n
 (10.73) 

where cn is the probability amplitude of finding the system in state n . In the limit 
where n is tiny compared to the statistical fluctuations in the number of COOPER 
pairs in each block (n N N ) , one COOPER pair can pass from one block to 
the other without changing the total energy of the system. 

Transfer of a COOPER pair from block (1) to block (2) corresponds to the passage 
of the system from state n  to n  1  while transfer from block (2) to block (1) 
corresponds to passage of the system from state n  to n  1  (Fig. 10.26). As the 
probability amplitudes for transfer of the COOPER pair from (1) to (2) or from (2)  
to (1) are identical, we find ourselves with a similar problem to that of an electron 
on a linear chain that can jump on one or other of its neighboring sites with equal 
probability amplitudes. The cn(t) satisfy the same SCHRÖDINGER equation 

 i dcn
dt

 E0 cn Acn1 Acn 1.  (10.74) 

 
Figure 10.26 - Representation of the states  n  of two coupled superconductors 

The system is in state n  if the superconducting block (1) contains (N/2  n) 
COOPER pairs and the block (2) contains (N/2  n). The term A is the probability 
amplitude for the system  in state n  to pass to one of its “neighboring” states 
n  1  or n  1 , i.e. for a COOPER  pair to tunnel from S2 to S1 or from S1 to S2 . 

The stationary solutions are given by the relations (10.68) where  is the phase 
difference between the coefficients cn and cn+1 that multiply n  and n  1  to  
construct a state  . The problem is now formally identical to that of an electron 
on a linear chain since  and n are conjugate variables obeying the uncertainty 
relations (10.69), the HAMILTON-JACOBI equations (10.70) and the FOURIER  
relations (10.71). 
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Figure 10.27  
Statistical partition of  

N objects into two boxes 
The probability distribution of finding 

n1 objects in the box (1) and n2 objects  
in box (2) is, in the limit of large numbers, a 

Gaussian centered on  N/2 with width N . 

First JOSEPHSON equation 

The variation in n translates into a flux of COOPER pairs from the superconducting 
component (1) to the superconducting component (2), and therefore into a current I. 
As a direct consequence of the first HAMILTON-JACOBI equation this gives 

 I1 2  qp
dn
dt


qp E  Ic sin ; Ic 

2qp A  4
0

A  (10.75) 

which is the first JOSEPHSON equation (relation 10.14). 

Stored energy in a junction 

Using the expression (10.68) and the relation (10.75) between Ic and A, the energy 
of the system in state   can be written 

 E( )  E0  EJ cos with EJ 
Ic 0
2

 (10.76) 

that, up to a constant, represents the energy stored in the JOSEPHSON junction as 
was expressed in relation (10.35). 

Second JOSEPHSON equation  

If we apply a potential difference V  V1  V2 between the two superconducting 
parts, the energy of the system in the n  state increases by an amount nqpV. By the 
second HAMILTON-JACOBI relation (10.70) this leads to 

 d
dt

 1 E
n


qpV  2eV  (10.77) 

that is none other than the second JOSEPHSON equation (10.18). 
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10.9.4 - A general property of BOSE-EINSTEIN condensates 

The “uncertainty relation” (10.69),    n  1, indicates that we cannot know ex-
actly and simultaneously the phase difference between the blocks and the number 
of particles that each contains. If we fix the particle number, the phase is indeter-
minate and if the phase is fixed, it is the particle number that becomes fluctuating. 
This is a general property of BOSE-EINSTEIN condensates that will re-appear in the 
BCS treatment of COOPER pairs. 
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Appendix 10A 

Solution of the coupling equations 

The matrix equation (10.5) couples the superconducting condensates (1) and (2) 
separated by a thin insulator. When we apply a potential difference V between the 
two blocks, the energies E1 and E2 of COOPER pairs are given by the expres-
sions (10.7). The equation for the coupling between the condensates of the two 
superconducting blocks can then be written 

 

qpV
2

K

K
qpV
2

n1(t) ei 1(t )

n2(t) ei 2 (t )
 i d

dt
n1(t) ei 1(t )

n2(t) ei 2 (t )
.  (10.78) 

We have two differential equations of first order. To pass from one to the other we 
permute the indices 1 and 2 and simultaneously change V to  V. It is therefore 
enough to resolve the first 

 i d
dt

n1 ei 1 
qpV

2
n1 ei 1 K n2 ei 2 .  (10.79) 

By expanding the derivative of the quantity in brackets this gives  

 i

dn1
dt

2 n1
ei 1  i n1

d 1
dt

ei 1 
qpV

2
n1  ei 1 K n2  ei 2  (10.80) 

or, i

dn1
dt

2 n1
 i n1

d 1
dt


qpV

2
n1 K n2  ei( 2 1).  (10.81) 

Equating real and imaginary parts we obtain, 

 d 1
dt


qpV
2

 K n2
n1

cos( 2 1)  (10.82a) 

 dn1
dt

 2K n1 n2  sin( 1 2 ).  (10.82b) 

By making the substitutions mentioned above the solutions of the second equation 
are 

 d 2
dt

 
qpV
2

 K n1
n2

cos( 2 1)   (10.83a) 

 dn2
dt

 2K n1n2 sin( 1 2 )  dn1
dt

.  (10.83b) 

where we recognize the expressions (10.8) and (10.9). 
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Appendix 10B 

JOSEPHSON junction in the over-damped regime 

Initial equations 

In the over-damped regime, driven by a continuous current of intensity I above the 
critical current Ic, the voltage V(t) and the phase difference (t) are related by 
(10.29b) 

  
V (t)  I Ic sin (t)

G
with I  Ic  (10.84) 

as well as the JOSEPHSON equation (10.23) 

 d
dt

 2eV .  (10.85) 

Average voltage V  and the period T 

By definition the time-averaged voltage is 

  V  1
T

V (t)dt0
T  (10.86) 

and, since over one period, t varies from 0 to T and simultaneously varies from 0 
to 2 , from (10.85), 

 d0
2

 2  2e V (t)0
T dt  (10.87) 

so that 1
T
 2e

h
V .  (10.88) 

The period is identical to the JOSEPHSON period that would be observed for a junc-
tion subject to a constant V  V . 

Average voltage V  as a function of injected current I 

Combining relations (10.84) and (10.85) and eliminating V leads to 

 
 

dt 
2e

G
I Ic sin

d .  (10.89a) 

By integrating over one period and a phase slip in  of 2 , we find 

 
 

dt0
T

 T 
2e

G
I Ic sin

d
0

2

 (10.89b) 

and replacing T by its expression (10.88), 

 
 

1
V

 1
2

G
I Ic sin

d
0

2

.  (10.89c) 
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The right hand side of (10.89c) can be evaluated using the indefinite integral 33 

 
  

1
I Ic sin

d  2
I 2 Ic

2
tan 1

I tan
2

Ic

I 2 Ic
2

 (10.90) 

For the two limits of integration,   0 and   2  the argument of the “inverse 
tangent” function is identical, since in both cases 

 
 

I tan
2

Ic

I 2 Ic
2


Ic

I 2 Ic
2

.  (10.91)

The tan 1 function is, however, defined modulo . This means that if we keep the 
same value of tan 1 for   0 and   , the integral vanishes, while if we choose 
two different values the integral equals  . 

Now if I  Ic , the term I  Ic sin  and the function G/(I  Ic sin ) are always 
positive. The correct choice is then 

 tan 1 Ic

I 2 Ic
2

2

tan 1 Ic

I 2 Ic
2

0

 .  (10.92) 

Substituted into (10.89) including the constant factors in (10.90), this leads to the 
result 

 
 
V  1

G
I 2 Ic

2 .  (10.93) 

                                                        

33 dx
p  qsin (ax)

 2
a p2 q2

tan 1
p tan ax

2
 q

p2 q2
 

 M.R. SPIEGEL (1974) SCHAUM Series, McGraw-Hill Inc, formula (14.36). 
Wolfram Mathematica, On-line integrator : http://integrals.wolfram.com/index.jsp 
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Appendix 10C 

JOSEPHSON junction subject to an alternating voltage 

If to a continuous voltage V, a small alternating componentv cos( 0 t  ) is added, 
the phase difference from one side to the other of the JOSEPHSON junction is given 
by the integral of the expression (10.18), 

 
  d

dt
 2e V  v cos( 0t  )

  (t)  2e Vt  v

0
 sin( 0t  )  (0).

 (10.94) 

Using the JOSEPHSON equation (10.14), the current intensity across the junction is 

 I  Ic sin (t)  Ic sin 2eVt  2e
0

v sin( 0t  )  (0)  (10.95) 

or, passing from the sine function to the imaginary part of an exponential, 

 I  Ic Im e
i 2eVt 2e

0
v sin( 0t ) (0)

 (10.96) 

where “Im” is the imaginary part of the expression in brackets. This expression can 
be factorized 

 
 
I  Ic Im e

i 2eVt (0)
e

i 2e
0

v sin( 0t )
.  (10.97) 

If we expand the exponential according to SCHLÖMILCH’s formula 

 
 

eiC sin x  J n(C)einx

n

n
 (10.98) 

where Jn is the integer BESSEL function of order n, we have 

 
 

I  Ic Im e
i 2eV t (0)

Jn
2e

0
v

n

n
ei(n 0 tn )  (10.99) 

that can be reordered as 

 
 

I  Ic Im Jn
2e

0
v

n

n
e

i 2eV n 0 tn  (0)
 (10.100) 

or, using the relation J n = ( 1)nJn and returning to the sine function,  

 I  Ic ( 1)n Jn
n0

n 2e
0

v sin 2eV  n 0  t  n  (0)  (10.101) 

which is just the relation (10.39). 



Chapter 11 
 

SUPERCONDUCTING QUANTUM INTERFERENCE DEVICE 
‘‘SQUID” 

SQUIDs are closed superconducting circuits containing one or more JOSEPHSON 
junctions. They may be isolated physically and only interact with the external envi-
ronment by electromagnetic coupling (rf-SQUID) or they may be inserted into part 
of electrical devices (DC-SQUID). They are at the heart of the most sensitive in-
struments for measuring magnetic fields. This chapter will introduce us to how they 
work and describe some of their most common configurations. 

11.1 - Nature of the SQUID current 

We first consider the simplest SQUID consisting of a superconducting ring inter-
rupted by a single JOSEPHSON junction (Fig. 11.1). A magnetic field flux 

  B  dS passes through the ring, that carries a current of intensity I. Positive 
signs for the orientations of B and I are chosen as indicated in Figure 11.1. 

Figure 11.1 
Elementary single junction rf-SQUID 

The single junction rf-SQUID is a closed super- 
conducting circuit into which is inserted 

a JOSEPHSON junction between C and D. 
A current I flows in the circuit through 

which passes a magnetic field flux . 

In such a circuit there are three terms entering the change in phase of the wave 
function of the superconducting condensate: 
»  a phase change due to the circulation of the current density j along the path DC 

(the large arc) followed in the positive direction (expression 9.11); 

 ( C D )current 
mp

np qp
j dlD

C ;  (11.1) 
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»  the phase change due to the circulation of the vector potential A along the same 
path DC (expression 9.11), 

 ( C D )mag 
qp A dlD

C ;  (11.2) 

»  the phase change between points situated on opposite sides of the junction, relat-
ed to the current that crosses it, (as in equation 10.15) 

 
 

CD  C D  sin 1 I
Ic

.  (11.3) 

If we follow a complete closed circuit the accumulated phase must be a multiple of 
2 so these phase changes must satisfy the equation 
 ( C  D)current  ( C  D)mag  ( D  C)   2 s (11.4) 
 Phase change from the current circulation JOSEPHSON phase between 
 and the vector potential between D and C the opposite sides of the junction 

where s is a positive or negative integer, the minus sign being introduced before s 
for convenience. 

As the points C and D, situated on each side of the JOSEPHSON junction, are very 
close (of the order of a nanometer), in calculating the phases (11.1) and (11.2) we 
make a negligible error by considering that the current density j and the vector po-
tential A make the whole closed circuit. Furthermore, using the fact that the circu-
lation of the vector potential A on a closed path equals the magnetic field flux  
that crosses any surface bounded by this path, the relation (11.4) becomes 

 m
np qp

j dl 
qp B dS  ( D C )  2s  (11.5a) 

or m
np qp

j dl 
qp  ( D C )  2s .  (11.5b) 

It is usually the case, and we will assume it for any of the SQUID devices consid-
ered in the following, that the critical current of the junction Ic is sufficiently weak 
for the current density in the circuit to remain infinitesimal. Therefore, the phase 
change associated with it is negligible 

 
mp

np qp
j dl 0. (11.6) 

Noting the magnetic phase term 

 mag 
qp  2e  2

0
 (11.7) 

the phase difference between the opposite sides of the JOSEPHSON junction reduces to 

 CD  C D  2 s mag .  (11.8) 
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The current intensity I can then be written 1 

 
 

I  Ic sin CD  Ic sin 2 s
0

 Ic sin(2 s mag ).  (11.9) 

Thus the current I that crosses the junction adjusts itself so as to satisfy the rela-
tion (11.9). The phase deficit CD between an integer number times 2  and the 
phase associated with the magnetic field flux mag is “healed” by the JOSEPHSON 
junction. This means that the SQUID current appears in order to generate a phase 
compensating the phase deficit between an integer multiple  s of 2  and the phase 
associated with the magnetic flux mag. 

In every case, whether the SQUID is isolated or integrated into an electrical de-
vice, whether it contains a single or several JOSEPHSON junctions of the same type, 
(0 or ), or of two differing types, the role of the JOSEPHSON current is to adjust the 
phase differences at the edges of the junctions in order to compensate the missing 
phase  

  2 s
0

 2 s mag .  (11.10) 

By applying the relation (11.9), a measurement of I allows us to obtain information 
on the magnetic field flux  across the SQUID loop. Knowing the geometry of this 
loop, we determine the magnetic field itself. 

Two important remarks: 
»  these relations are only valid if the JOSEPHSON junctions maintain continuity of 

the superconductivity, i.e. if the current intensities across the junctions are less 
than their critical currents Ic ; 

»  in practice, it is the value of the magnetic field Bext, i.e. of the field in the absence 
of the SQUID, that we wish to measure. To do this, we must know how to relate 
the total flux  across the SQUID circuit to the flux ext of the magnetic field Bext 
across the same circuit. In general they are rather different since added to the  
external flux is the magnetic field flux created by the current I equal to LI, where 
L is the inductance of the circuit, 

  ext  LI .  (11.11) 

In the following we shall first treat, for simplicity, cases of weakly inductive 
SQUIDs where the contribution of the term LI is negligible. We shall then discuss 
several SQUID devices where the inductance brings significant changes of  
behavior. 

                                                        
1 In relation (11.9) we could have suppressed the term 2 s, which does not change the 

value of the sine function. We retain it to clarify the physical mechanism and in order to 
treat rf-SQUID’s with several junctions. 
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11.2 - rf-SQUID with vanishing inductance 

11.2.1 - Single junction non-inductive rf-SQUID 

We shall specify what happens when, after cooling an rf-SQUID in zero magnetic 
field, an increasing external field Bext is applied. If it were a simple closed super-
conducting circuit, lacking any JOSEPHSON junction, by virtue of the MEISSNER 
effect and its application to a superconductor with a hole (see section 2.8), a screen-
ing current would develop. It would increase with the external field, so that the 
magnetic flux across the circuit would continue to vanish. 

With the addition of the JOSEPHSON junction, the history is no longer the same. As 
soon as the screening current reaches Ic, the JOSEPHSON junction shows a loss of 
continuity in the superconductivity and allows the magnetic field to penetrate into 
the circuit. The junction only “closes up” when the difference between the external 
magnetic field flux and the total magnetic field flux becomes less than LIc. With 
Ic very weak and, as we suppose in this section, a small coefficient of self induc-
tion L, the screening effect is insignificant and, to a first approximation, the total 
magnetic field flux in the ring remains equal to the external magnetic field flux. 

In this very simple case where   ext, the magnetic phase change mag represented 
by a point M on Figure 11.2 varies linearly with the external field flux (relation 11.7). 

 
Figure 11.2 - Magnetic and JOSEPHSON phase changes  

in a non-inductive rf-SQUID ring with a single junction 
The accumulation of magnetic phase obtained by making a turn of the circuit is represent-
ed by a point M located on the line of slope 2 . In order that the total change over a turn of 
the circuit can be multiple of 2 , the magnetic phase change must be accompanied by a 
JOSEPHSON phase jump CD  (MP) . The arrows joining different points M1, M2… to points 
P1, P2… represent the JOSEPHSON phase jumps associated with different magnetic phases. 
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The role of the current I is to produce between the sides of the JOSEPHSON junction 
a phase jump  MP  that brings the point M on the line mag  F( ext/ 0), to the 
point P situated on the closest horizontal line of ordinate 2s  (Fig. 11.2).2 

Determined in this way, the phase difference  shows a discontinuity (   ;  ) at 
half-integer values of ext/ 0 (Fig. 11.3a). The resulting current I is sinusoidal and 
varies with the external magnetic flux as shown in Figure 11.3b, 

 
 

I  Ic sin  Ic sin 2
ext

0
 (11.12)  

Because of the very small value of the flux quantum 0  2.07 10 15 Wb, this de-
vice is extremely sensitive to changes in magnetic field. In a SQUID circuit of 
1 mm2, each period of current corresponds to a variation in the magnetic field of 
2.07 10 9 T, or of the order of a ten thousandth of the Earth’s magnetic field! Since 
in practice it is possible to detect current variations of about 10 3 Ic and therefore 
fractions of periods of the same order of magnitude, we can measure variations of 
magnetic fields as weak as ~ 10 12 T. This sensitivity allows for the measurement 
of tiny magnetic fields such as the biological magnetic fields generated by the elec-
tric currents of neurons. 

/ / /

I

I

 
Figure 11.3 - Phase and current in a single junction, non-inductive rf-SQUID 

(a) The phase difference between the edges of the JOSEPHSON junction varies periodically as a 
function of the external field flux ext. (b) The current intensity is sinusoidal with periodicity 0. 

11.2.2 - Non-inductive rf-SQUID with two junctions 

When two JOSEPHSON junctions are integrated in an rf-SQUID circuit (Fig. 11.4), 
the phase  to be recovered is still given by the relation (11.10) but it is divided 
between the two junctions, in equal parts if they are identical, with 

                                                        
2 The point P could be positioned on another horizontal line at a multiple of 2  without 

violating the constraints on the phases but the cost in energy would be higher since  
would no longer be between  /2 and  /2, (see section 10.5). 
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 EF  GH ; EF  GH 
2

; I  Ic sin
2

.  (11.13) 

9

 
Figure 11.4 - rf-SQUID ring with two junctions 

Two identical JOSEPHSON junctions are inserted in a closed circuit. 

The phase that each JOSEPHSON junction must recover and the current intensity that 
contributes to it, are drawn in the Figures 11.5a and 11.5b. As for the single junc-
tion circuit, the periodicity is 0, but I shows discontinuities that are a priori easy to 
detect and treat by signal analysis. Nonetheless, if the JOSEPHSON junctions are 
slightly different, as is usually the case, the discontinuities are a little smeared out. 

I

I

 
Figure 11.5 - Current in a non-inductive rf-SQUID ring with two junctions 

(a) The phase difference between the edges of each of the JOSEPHSON junctions is 
half the phase difference between the edges of the single JOSEPHSON junction of 
Figure 11.3a. (b) The intensity of the current remains periodic with the appearance 
of discontinuities when the external field flux is a half-integral number of fluxons. 
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11.3 - Inductive rf-SQUID  

11.3.1 - Magnetic phase change and the external field flux 

In the last paragraphs, it was supposed that the SQUID circuit was non-inductive 
and that the current I contributed nothing to the magnetic flux across the circuit, so 
that we could write   ext. When the flux LI of the magnetic field created by the 
current I is taken into account and the flux  across the circuit is given by (11.11), 
the relation between the external flux and total flux in the circuit becomes, by  
replacing I by (   ext) /L in (11.9) 

 
ext

0


0

L
2

sin2 s
0

.  (11.14) 

In this expression the inductance of the circuit enters as a reduced parameter L, 
that is called the “screening parameter”, 

 L  2
LIc

0
.  (11.15) 

L represents the maximum magnetic phase change that the circuit inductance can 
produce. Because of the relation (11.14), the magnetic phase mag  2 (  / 0) no 
longer varies linearly with the reduced external field flux ( ext / 0) that we may 
wish to determine from a measurement of I. 

A graphical approach consists of first drawing ( ext / 0) as a function of 2 (  / 0) 
(eq. 11.14) then, by inverting the axes, plotting the curve mag  F( ext / 0) 
(Fig. 11.6). We can then place on the curve the points M of coordinates 
( ext / 0, mag) from which the phases to be added are represented as   MP , 
where P are the points situated on the closest horizontal lines of value 2 s. 

»  The case L  0 (   ext) is that of Figure 11.2 where mag varies linearly with 
ext / 0. 

»  As L increases, the straight line distorts progressively until L  1, at which val-
ue vertical tangents appear at half-integer values of ext / 0. 

»  For values beyond L  1, the function mag  F( ext / 0) becomes multi-valued 
and to each value of ext / 0 within a range of increasing width around (n  ½) 
there correspond three possible values for mag (see expression 11.14 and 
Fig. 11.6). 
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Figure 11.6 - Inductive rf-SQUID: magnetic phase  

as a function of the external field flux, for different values of the screening parameter L 
The magnetic phase difference, that varies linearly with the external magnetic flux in a non-
inductive SQUID ( L  0), gradually distorts when L increases. For L  1, the relation be-
tween the magnetic phase and the external field is single-valued. Beyond L  1, the func-
tion is multi-valued with, near half-integer values of ext/ 0, several phase values possible for 
the same flux ext. Some JOSEPHSON phases are indicated with arrows for the case of L  3. 

»  Beyond L  4.61, there are three values of mag for each value ext / 0 and for 
even higher values of L there are ranges near integer values of ext / 0 where five 
values of mag are solutions (Fig. 11.7). 
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Figure 11.7 - Magnetic phases at high values of L 

When L  4.61, mag is multi-valued for all values of ext. On this 
curve, drawn for L  7, three values of mag satisfy the phase relation 
(11.14) for half-integer values of ext 0 and five for integer values. 

11.3.2 - Operation of the inductive rf-SQUID 

»  As long as L  1, the behavior of the inductive rf-SQUID is qualitatively the 
same as the non-inductive rf-SQUID, except for a distortion with respect to the 
sinusoidal regime because of the non-linearity of 2 (  / 0)  mag with  

ext / 0. 

»  For L  1 where the function mag  F( ext / 0) has become multi-valued, the 
path followed by the point M when changing  

ext becomes hysteretic, as shown 
in Figure 11.8 for the particular case L  2.5. By construction, the phase correc-
tion in the junction   MP  and therefore of the intensity I  Ic sin 

CD of  
the current in the circuit, as represented in Figures 11.9a and 11.9b are also  
hysteretic. 
The cycles of hysteresis develop around the points s with coordinates  
{(n + ½) , (2n + 1) }. For each half-integer value of  

ext / 0, in addition to s that 
corresponds to an unstable situation, two points M1 and M2, positioned symmet-
rically above and below s, satisfy the conditions required by the phases: M1 is 
on the path followed when the magnetic field is raised and M2 when it descends. 
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Figure 11.8 - Phases in an inductive SQUID ring at a junction ( L  2.5) 

The total reduced magnetic flux  / 0  and the accumulation of magnetic phase that fol-
lows are multi-valued functions of  ext/ 0.  / 0 follows the different trajectories, as indi-
cated by arrows, for increasing and decreasing  ext/ 0. The JOSEPHSON phase component 
joins the point that represents the magnetic phase (for example M1 or M2) to the closest 
value of 2s  (P1 or P2 respectively). The dotted line corresponds to unstable situations. 

I

I

 
Figure 11.9 - Phase and current in a single junction, inductive rf-SQUID, ( L = 2.5) 

(a) Phase across the JOSEPHSON junction in a circuit with screening parameter L  2.5. The val-
ues associated with the many-valued equation (11.14) but corresponding to unstable situations 
are shown with dotted lines. The curves followed during the increase, and then the decrease, of 
the external field are shown with thick lines. (b) Variation of the associated JOSEPHSON current. 
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11.4 - rf-SQUID with  junction 

The equations that govern the behavior of a SQUID ring with a  junction (see sec-
tion 10.8.1) are formally close to those of a SQUID with a 0 junction. The only 
modification consists of changing Ic to  Ic in equation (11.9). This requires a 
change of sign before L in the relation (11.14), which becomes: 

 
ext

0


0
 L

2
sin2 s

0
 (11.16) 

and, for the same value of L, transforms the figure 11.8 into 11.10. The cycles of 
hysteresis are now centered around the points {  ext / 0  n , 2  / 0  2n }. In par-
ticular, in the absence of an external field, two points M1 and M2, corresponding to 
trapped fluxes 1 and 2, satisfy the imposed phase conditions. They move closer to 
± 0

 /2 as L becomes greater. From the relation  =  ext + LI, they are generated by 
the spontaneous currents 1

 /L for M1 and 2
 /L for M2 that flow in opposite direc-

tions (see Fig. 11.11b). 

 
Figure 11.10 – Magnetic phases in an inductive rf-SQUID with a single  junction ( L  2.5) 

The variation of the magnetic phase as a function of  ext/ 0 in the circuit with a  
 junction ( L  2.5) is to be compared with that produced by a 0 junction as shown in 

Figure 11.8. The hysteretic cycles are now centered on the points (n, 2n ). The points 
M1 and M2 indicate the two equivalent states of trapped fluxes in zero external field. 
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11.5 - Inductive single junction SQUID: energetic approach 

We now reconsider the single junction SQUID circuit with one JOSEPHSON junc-
tion, 0 or , of inductance L subject to an external field Bext. The flux through the 
circuit is  =  ext + LI. 

The total energy of the system Etot is the sum of the magnetic energy of the ring, 

 Emag  ½LI 2  ( ext )2

2L
 (11. 17) 

and the energy stored in the 0 or  junction (relations 10.35 and 10.54: the minus 
sign is for the 0, the plus for the ), 


 
E0/  EJ (1 cos ) with EJ 

Ic 0
2

 (11.18) 

which can be written, using the relation (11.8) relating the phases at the edges of 
the junction  to the flux  crossing the circuit, 

 E0/  EJ 1  cos 2
0

. (11.19) 

This leads to, for an rf-SQUID including a junction 0, 

 
Etot

0

EJ
 2 2

L

ext

0

2

 2sin2

0
 (11.20) 

and for an rf-SQUID with a  junction, 

 
Etot
EJ

 2 2

L

ext

0

2

 2cos2

0
. (11.21) 

In zero external field these energies are the sum of a parabolic term (2 2/ L) (  / 0)2 
and an oscillatory term whose relative contribution becomes increasingly large as 

L increases. 

The variation with / 0 of the total energy of the SQUID with a 0 junction in zero 
external field is shown in Figure 11.11a. Independently of the circuit parameters, it 
always has an absolute minimum at   0, which is not surprising since both the 
magnetic energy and the 0 junction are minimized for   LI  0. 

The case of a SQUID with a  junction is displayed in Figure 11.11b. It shows that 
for L  1, the minimum energy stays at   0, but that when L  1, two equivalent 
minima appear, at which the flux  through the SQUID approaches  0 / 2 more 
and more closely as L increases (Fig. 11.12). 

With these two energy minima separated by an energy barrier that increases with 
L, the SQUID circuit becomes a bi-stable device. In each of the two energy mini-

ma, that incidentally correspond to the points M2 and M1 of Figure 11.10, the 
SQUID carries a spontaneous current I and traps a flux   LI. 
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I
I

 
Figure 11.11 - Energy of a single junction rf-SQUID in zero external field as a function of   / 0 

(a) The energy of a rf-SQUID circuit with a single JOSEPHSON junction of type 0 has always a 
minimum at total flux zero. (b) The energy of a rf-SQUID circuit with a JOSEPHSON junction 
of type  has two minima when the coefficient L  2  (LIc

 / 0) exceeds 1. To each mini-
mum there corresponds a trapped flux that comes closer to  0 /2 as L becomes large. 

Figure 11.12
Flux trapped in a  junction rf-SQUID

in zero external field
The flux trapped in the absence of an 
external field in a  junction rf-SQUID

vanishes for  L  1. Beyond this value,
it increases with L and tends

asymptotically towards  0 2.

The emergence of a bi-stable state results from a competition between the minimal 
magnetic energy for   LI  0, and the energy of the isolated junction whose  
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minima are situated at   0 (Fig. 10.21b). The term L, that represents the rela-
tive weight of the junction energy compared to the magnetic energy favors its  
appearance. The physical reason for trapping a flux close to a half fluxon can be 
easily understood since if L is large, a current very small compared to Ic suffices to 
generate a flux  0

 /2 that will minimize the junction energy without producing a 
significant magnetic energy LI 2/2   2/2L. 

The process of reversal of the flux  in a  junction rf-SQUID, under the effect of 
an external flux  ext, is visualized in Figure 11.13 for L  2.5. The figure displays 
both  / 0 as a function of  ext / 0 (relation 11.16), and the energy profile E tot as a 
function of  / 0 (relation 11.20), for a few values of  ext / 0. 

I

 
Figure 11.13 - Process of flux reversal through a  junction rf-SQUID ( L  2.5) 

(a) Magnetic flux through a  junction rf-SQUID ring with L  2.5, as a function of the external 
field, while satisfying the phase constraints (relation 11.16). The hysteresis represented is simp-
ly the central cycle of Figure 11.10. (b) Energy of the rf-SQUID as a function of the magnetic 
field flux that crosses it for different values of the external field flux. With increasing  ext, a sys-
tem that is initially in the state M2 has its flux reverse when the potential barrier disappears 
(M”2 ), and correspondingly  as a function of  ext no longer has more than a one solution. 

At  ext  0, after starting from a state with very negative external fields, the system 
reaches M2 and the trapped flux is 2   0.34 0. Energetically, it is separated 
from the state M1, of the same energy and of opposite trapped flux 1   0.34 0, 
by a potential barrier of height  0.032 Ic 0. 

As the external flux increases the system moves to M’2. Its energy becomes greater 
than that of solution M’1, but the trapped flux remains negative because of the po-
tential barrier that is certainly lowered, but still remains effective in preventing 
transitions between the two states. 
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When the external flux reaches  ext  0.165 0, the potential barrier vanishes com-
pletely and the solution represented by the point M”2 becomes energetically unsta-
ble. The system then jumps to the state represented by the point M”1 with positive 
trapped flux. Consistent with this, the external flux  ext  0.165 0 constitutes the 
extreme limit for which the relation (11.8) between phases allows a solution of 
negative flux. At non-zero temperatures, the barrier may be overcome by thermal 
excitation and stability of trapped flux is guaranteed only is the barrier height is 
sufficiently large compared to kBT. 

11.6 - rf-SQUID with two JOSEPHSON junctions of different types 

11.6.1 - 0-π rf-SQUID with zero inductance 

The case of an rf-SQUID with two  type junctions is very similar to the rf-SQUID 
with two 0 type junctions since it suffices to change Ic into  Ic in all the expres-
sions derived, which reverses the direction of the current. 

The situation is noticeably different (Fig. 11.14) when one of the junctions is of 
type 0 (EF) and the other of type  (GH) since the phases at the extremities of the 
JOSEPHSON junctions are related to the current intensity by: 

   I  Ic sin EF I  Ic sin GH  (11.22) 

which with  EF  GH  2 s
0

 (11.23) 

gives EF  s
0 2

and GH  s
0


2

.  (11.24) 

 
Figure 11.14 - 0-  rf-SQUID with 0 and  junctions 

Restricting ourselves to the case of zero inductance (field flux created by the cur-
rent flowing in the ring negligible compared to the flux of the external magnetic 
field), the phase changes EF and GH are as given by the relation (11.13) shifted 
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by  /2 for GH and by  /2 for EF. This leads to a “lifting of degeneracy” of the 
phases (Fig. 11.15a) and a simple shift by a half-fluxon of the JOSEPHSON current 
(Fig. 11.15b). The discontinuities are then seen at integer values of  ext/ 0. 

I

I

 
Figure 11.15 - Phase changes and JOSEPHSON current in a SQUID loop  

with two junctions of different type (0 and ) 
(a) Phase changes GH and EF at the extremities of 
the  and 0 junctions. (b) Current flowing in the circuit. 

11.6.2 - 0-π rf-SQUID of significant inductance 

With the magnetic energy given by the expression (11.17) and the junction  
energies, 
 EEF  EJ (1 cos EF ) and EGH  EJ (1 cos GH )  (11.25) 

that, using expressions (11.24), appear to be equal 

 EEF  EGH  EJ 1 sin s
0

. (11.26) 

The total energy of the SQUID circuit is then 

 E tot

EJ
 2 2

L

ext

0

2

 4sin2
4

(2s 1)
2 0

.  (11.27) 

In zero external field ( ext  0) the system has, for any value of L  0, two minima 
of the same energy, one for s  0 and the other for s  1. They correspond to spon-
taneous field fluxes approaching  

0
 /2 and  

0
 /2 respectively as L becomes 

large (Figs. 11.16 and 11.17). The system is again bi-stable but, unlike the single  
-junction rf-SQUID, it is so for any value of L  0. 
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I

 
Figure 11.16 - Energy of an rf-SQUID with two junctions, one of type 0, the other   

at zero field Bext, as a function of  // 0 and for different values of L 
For each value of L, there are two energy minima corresponding to trapped fluxes of 
opposite signs. They correspond to the solutions s  0 and s  1 of the relation (11.27). 

Figure 11.17 
Trapped flux in zero external field in an 
rf-SQUID with two JOSEPHSON junctions,

one , the other 0 type 
In an rf-SQUID with 0 and  type junc-

tions, the trapped flux in the absence of 
external flux increases from L  0 and 
tends asymptotically towards ± 0 /2. 



306 SUPERCONDUCTIVITY 

11.7 - Reading an rf-SQUID 

As single- or two-junction rf-SQUID loops do not have physical links to external 
circuits, we have to look for the information they contain without interfering signif-
icantly with their operation. 

The usual method consists of coupling the rf-SQUID circuit to an RLC circuit 
(Fig. 11.18), whose period of resonant oscillation is much smaller than the charac-
teristic time for changes in the flux – at the scale of a fluxon – across the 
rf-SQUID. A detailed analysis shows that the current flowing across the SQUID 
modifies the resonant frequency of the RLC circuit. Operated at constant voltage 
and at its natural resonant frequency, the RLC circuit has a current intensity that is 
directly related to the current flowing in the SQUID circuit and therefore to ext. 

 
Figure 11.18 - Reading an rf-SQUID 

The rf-SQUID is a closed circuit in which a JOSEPHSON junction has been inserted. Read-
ing is by measuring the impedance of a resonant circuit to which it is coupled. This 
impedance is a periodic function, with period 0 , of the flux across the SQUID circuit. 

This is the reason why SQUIDs with a closed circuit are also called “SQUIDs with 
radio-frequency coupling” or “rf-SQUIDs.” 

11.8 - DC-SQUID (SQUID polarized by Direct Current) 

11.8.1 - Principle of the DC-SQUID 

The DC-SQUID, or SQUID polarized by a Direct Current, is a superconducting 
loop consisting of two JOSEPHSON junctions inserted into an electrical circuit con-
taining two branches, through which flows a current intensity I (Fig. 11.19). Com-
pared to an rf-SQUID, it has the advantage of being physically linked to the exteri-
or and therefore adapted for direct readings. 

In the device of Figure 11.19, the input current I separates into two components,  
I1 in the lower branch (crossing the junction EF) and I2 in the upper branch (cross-
ing the junction HG). With complete generality these intensities can be written 
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 I1 
I
2
 i ; I2 

I
2

i  (11.28) 

where i will adjusts itself so that the phase condition (11.10) is satisfied, 

  EF  GH  2 s
0

.  (11.29) 

Furthermore, writing 

 EF 
2
 0 ; GH 

2 0  (11.30) 

where 0 is an adjustable phase and using the JOSEPHSON relations 

 I1  Ic sin EF ; I2  Ic sin HG  Ic sin GH  (11.31) 

we derive the two equations 

 
 

I1 
I
2
 i  Ic sin s

0
 0  (11.32a) 

 I2 
I
2

i  Ic  sin s
0

0  (11.32b) 

from which we find 

 I  I1  I2  2Ic cos s
0

sin 0 .  (11.33) 

9

 
Figure 11.19 - DC-SQUID 

The DC-SQUID is a superconducting loop with two branches containing 
JOSEPHSON junctions, inserted into an electric circuit. At the input of the loop, 
the main current I divides into two components I1  I/2  i and I2  I /2  i. 

A non-zero current I can therefore flow through the device without appearance of a 
voltage between the leads of the device flow provided its intensity is less than a 
value Imax(  ) 

 
 

Imax ( )  2Ic cos s
0

.  (11.34) 

DC-SQUID with zero inductance (βL = 0) 

If the inductance of the circuit is negligible,    ext, and in so far as the injected 
current intensity is less than Imax(  ext), 0 adjusts spontaneously so that the  



308 SUPERCONDUCTIVITY 

relation (11.33) is satisfied. As soon as the current exceeds Imax(  ext), one at least 
of the two JOSEPHSON junctions conducts a current exceeding Ic and a potential 
difference appears across the leads of the device. 

Imax oscillates between 2 Ic when  ext  n 0 and 0 when  ext  (2n + 1)( 0
 /2) 

(Fig. 11.20). The situation Imax  2 Ic corresponds to i  0 while Imax  0 occurs 
when i  ± Ic. 

I

I

I

 
Figure 11.20 - Maximum current transported by a DC-SQUID 

Theoretical value of the maximum current Imax that a DC-SQUID can carry without 
a potential difference between its leads. It is a periodic function (with period 0)  
of the external flux  ext that threads it. Imax varies between a greatest value of 2Ic 
(for  ext  n 0) and the smallest value (for  ext  (n  ½) 0) that is a function of L. 
The smallest value is 0 for L  0 and it approaches 2Ic when L increases. 

Inductive DC-SQUID (βL ≠ 0) 

When the DC-SQUID is inductive, the flux  in relations (11.32) becomes 

  ext  (L1I1 L2I2 )  (11.35a) 

where L1 and L2 are the inductances of each of the SQUID branches, so that when 
the two are symmetric (L1  L2  L/2) 

 (L1I1 L2I2 )  Li  (11.35b) 

Imax oscillates with the same period 0, between the greatest value 2 Ic, unchanged 
since it corresponds to i  0, and the smallest value that becomes non-zero and  
increasingly large as L becomes larger (Fig. 11.20). 
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11.8.2 - DC-SQUID in the over-damped regime 

In the general case, each of the JOSEPHSON junctions in the DC-SQUID can,  
according to the RCSJ model (see section 10.4.2), be modelled by a JOSEPHSON 
channel in parallel with a conductance G and a capacitance C (fig. 10.6). The  
DC-SQUID is then characterized by the screening parameter L of the circuit and 
the STEWART-MCCUMBER parameter c of the junctions (defined in Table 10.1). 

When we are in the over-damped regime ( c  0) and the injected current exceeds 
the value of Imax(  ext) for a given flux  ext, then from the relation (10.30b) the 
average voltage V(  ext)  obeys 

 V ( ext )  1
2G

I 2 Imax ( ext )
2

 (11.36) 

as represented by the curves in Figure 11.21. They have been drawn for two values 
of L (0 and ) and for several values of the external flux  ext  (n  m) 0 where n 
is an integer and m is in the ranges 0  m  0.5, with curves corresponding to m and 
1  m coinciding. 

II

I I

 
Figure 11.21 - Average voltage V  at the leads of a DC SQUID  

in the over-damped regime as a function of the injected current I 
Each figure presents a collection of curves corresponding to several values of m 
defining  ext  (n  m) 0 where n is an integer and 0  m  0.5. The curves with 
m replaced by (1  m) would be identical. (a) L  0. (b) L  . Measurement of 
the voltage V  for a fixed value of Imeas slightly above 2 Imax allows m to be  
determined, and thereby to count the number of fluxons crossing the SQUID. 

11.8.3 - Reading a DC-SQUID 

One piece of information provided by a DC-SQUID is, from relation (11.34), the 
maximum intensity Imax of the current that can pass through the circuit crossed  
by a magnetic field flux  ext before a potential difference appears in its leads.  
The measurement of  ext can therefore proceed by the determination of Imax.  
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In practice this method is difficult, since for each new determination of  ext, the 
current intensity I must be increased from zero up to the value Imax(  ext) beyond 
which a voltage is detected in the leads of the DC-SQUID. In particular, if  ext 
varies in time it will be necessary to make very rapid scans. 

In fact it turns out to be much simpler to make the measurement of  ext by working 
in the over-damped (non-hysteretic) mode and keeping the current intensity I at a 
value Imeas slightly above 2 Ic. As can be seen in Figure 11.21a, V  is at fixed 
I  Imeas , different for each value of m. The measurement of V(  ext)  for a value 
just above 2 Ic avoids scanning in I, as was needed in the previous, more demand-
ing, method that we just described. 

11.8.4 - 0-π DC- SQUID 

If the two junctions are -type, the relations between intensities and phase changes 
previously expressed by (11.31) become: 

 I1  Ic sin EF ; I2  Ic sin HG  (11.37) 

which, by applying the relations (11.28) to (11.30) leads to a simple change in the 
sign of I in (11.33), and therefore to an expression for Imax( ext) identical to the 
relation (11.34). 

When one of the junctions is of type 0 (EF) and the other  (HG) the relations be-
tween currents and phases become 

 I1  Ic sin EF ; I2  Ic sin HG .  (11.38) 

The equations (11.32) are transformed as 

 I
2
 i  Ic sin s

ext

0
 0  (11.39a) 

 
 

I
2

i  Ic sin s
ext

0
0  (11.39b) 

leading to 
 

I  2Ic sin s
ext

0
cos 0  (11.40) 

and a maximum current 

 
  
Imax ( ext )  2Ic sin s

ext

0
 (11.41) 

shifted by a half-fluxon compared to a DC-SQUID with identical junctions. 

An excellent demonstration of this behavior was given by W. GUICHARD et al. 3 
(Fig. 11.22), who showed that the intensities Imax of DC-SQUIDs with two  

                                                        
3 W. GUICHARD et al. (2003) Phys. Rev. Lett. 90, 167001. 



11 - SUPERCONDUCTING QUANTUM INTERFERENCE DEVICE ‘‘SQUID” 311 

identical junctions (either 0 or ) superimpose, while the intensity of a DC-SQUID 
with two different junctions has the same amplitude but is shifted by a half-fluxon. 

I

I

I

 
Figure 11.22 - Maximum currents Imax in DC-SQUID circuits 

for homo- and hetero-junctions as a function of applied field 
(a) The currents Imax of DC-SQUID homo-junctions (0-0) or ( - ) with identical circuits can be 
superimposed (up to technical difficulties). (b) (c) The currents Imax of hetero-junctions DC-SQUID 
(0- ) are opposite in phase compared to those of SQUID homo-junctions with otherwise identical 
circuits. [From W. GUICHARD et al., 2003, © The American Physical Society, with permission] 3 



Chapter 12 
 

JOSEPHSON JUNCTIONS IN A MAGNETIC FIELD 

After the introduction to the JOSEPHSON junction (Chap. 10) and the presentation of 
its role in SQUIDs (Chap. 11), this chapter introduces effects resulting from appli-
cation of a magnetic field Bext to the junction itself.1 

In the following, we will consider SIS junctions whose insulating layers are paral-
lelepipeds of length a, width c and thickness d. In all the devices, the current cross-
es the insulating layer perpendicularly to the ac plane i.e. in the d direction, and the 
external field Bext is applied along its width, i.e. in the c direction (Fig. 12.1a). By 
extension, the parameters d, c and a of the insulating layers will be referred as the 
thickness, the width and the length of the JOSEPHSON junctions. 

In practice, the insulating layer can be inserted between two superconductors S1 
and S2, with different geometry. Among them are the grain boundary geometry 
(Fig. 12.1b) or the inline geometry (Fig. 12.1c). 

The length a of the junction is the relevant parameter that distinguishes two situa-
tions depending on its value compared to the so-called “JOSEPHSON penetration 
depth J

 ” (ranging from 10 m to 1 mm), which will appear in more precise form 
in the general analysis. 

If a is much less than J, the JOSEPHSON junction is said to be “short.” The magnet-
ic field in the insulating layer can be considered as uniformly equal to the external 
field Bext applied on and around the junction, and the JOSEPHSON current as simply 
superimposed onto the screening currents. 

If a is equal to or larger than J, the JOSEPHSON junction is said to be “long.” No 
longer is the magnetic field uniform inside the junction. The screening currents and 
the JOSEPHSON current now cannot be treated separately. 

In the following, we first consider the behavior of a short JOSEPHSON junction  
before examining the general case, from which the definition of the JOSEPHSON 
penetration depth J will emerge naturally. For simplicity, except in section 12.6, 
we only consider the grain boundary junction of figure 12.1b. 
                                                        
1 A. BARONE and G. PATERNÒ (1982) Physics and Applications of the JOSEPHSON Effect, 

Chapters 4 & 5, John Wiley, New York. 

© Springer International Publishing AG 2017
P. Mangin and R. Kahn, Superconductivity, 
DOI 10.1007/978-3-319-50527-5_12
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Figure 12.1 - Various SIS JOSEPHSON junctions 

(a) Geometry of the insulating layer common to all SIS JOSEPHSON junctions. It 
is a parallelepiped of length a, width c and thickness d. The current flows in 
the direction of d and the magnetic field Bext is applied along the width of the 
layer. (b) Grain boundary JOSEPHSON junction. (c) In-line JOSEPHSON junction. 

12.1 - Magnetic field on a short JOSEPHSON junction 

In such a short junction, the magnetic field inside the insulating layer is simply the 
field Bext applied on and immediately around the junction. Damped by the screen-
ing current, the field decreases exponentially from each side of the insulating layer 
towards the superconducting parts, with respective penetration depths 1 and 2, 
(see Figs 12.2 and 12.3a). Provided the length a of the junction is much greater 
than the penetration depths of the magnetic field (a  1, 2) (although still much 
less than the JOSEPHSON penetration depth), boundary effects near y   a/2 will be 
negligibly small. 
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In the coordinate system (x,y,z) of Figure 12.2, the magnetic field B and the screen-
ing current density jscr on each side of the insulating layer depend only on x, and 
are oriented in the z (Fig. 12.3b) and y directions (Fig. 12.3c) respectively. 

9 

 
Figure 12.2 - Magnetic field and screening currents in a short JOSEPHSON junction 

The external field penetrates uniformly into the insulating layer (in 
black) and, because of screening currents, decreases exponentially in 
the two superconductors situated at either side, as seen in Fig. 12.3). 

For practical reasons, we take the origin of the vector potential A at the middle of 
the insulating layer. Oriented in the y direction, it is related to the magnetic field by 

 Bz (x) 
Ay (x)

x
and Ay (x)  Bz (u)du0

x .  (12.1) 

As shown in figure 12.3d, it varies linearly in the insulating layer. Beyond the 
LONDON penetration depths (| x |  1, 2) it tends to the asymptotic values 

 
Ay (S1)  d 2  1 Bext  

Ay (S2)  d 2  2 Bext .
 (12.2) 

12.2 - Current in a short JOSEPHSON junction under a magnetic field 

In the absence of a magnetic field, the current intensity across the junction obeys 
the JOSEPHSON equation 

 I  Ic sin ( 1  2) (12.3a) 

where 1 and 2 are the phases of the wave functions of each superconducting block. 
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9 7

 
Figure 12.3 - Magnetic field, vector potential and current density 

within a short JOSEPHSON junction (a  J) 
In the short junction, an external magnetic field oriented in the z direction penetrates 
uniformly into the insulator and persists into the superconductor over the LONDON 
penetration depths. Screening currents flowing in the y direction, (dotted arrows), ac-
company the decrease of the magnetic field in the superconductors. D is the magnetic 
thickness. (a) Overall view of the magnetic field profile and the screening current. Pro-
files of (b) the magnetic field, (c) the screening currents and (d) the vector potential. 
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As far as the phases are uniform in each block, the current density is distributed 
uniformly across the insulating layer according to 

  j  jc  sin ( 1 2 )  (12.3b) 

with 
 
jc 

Ic
ac

 (12.4) 

where c is the width of the junction (see Fig. 12.1) and jc its critical current density. 

The aim of the following discussion is to show that when the junction is placed in 
an uniform magnetic field, the phase difference (y)  1(y)  2(y) between two 
points situated on opposite sides of the insulating layer varies in the y direction and 
that as a result, the current density across the junction is no longer uniform. As 
mentioned in the introduction for this case of a short barrier, we will assume that 
the JOSEPHSON current density jJ flowing across the barrier is weak enough not to 
modify the screening currents jscr that protect the superconducting regions from 
magnetic field penetration. 

We then consider (see Fig. 12.4), points C and D on one side, and E and F on the 
other side of the insulating layer. The points C and D are on the x axis (y  0) while 
E and F have coordinate y. The points C’, D’, E’, F’ have the same y-coordinates 
but are sufficiently distant from the insulating layer that the screening current  
vanishes at each of them, and that the vector potential has reached its asymptotic 
values Ay  . 

The JOSEPHSON current densities that cross the insulating layer between points C 
and D, or between F and E, are determined by the JOSEPHSON equation 

  j J
C D  j x

J (0)  jc sin (0)   with  (0)  C  D (12.5a) 

  j J
F E  j x

J (y)  jc sin (y)   with  (y)  F  E (12.5b) 

and the phase differences are connected by the relation 

 F E 
( F F’)  ( F’ C’)  ( C’ C )  ( C D )
( D D’)  ( D’ E’)  ( E’ E )

 (12.6) 

where: 
»   the phase difference between two points situated on the same side of the barrier 

and with the same y coordinate, such as DD’ (but also CC’, EE’, and FF’) is,  
according to (9.11), 

 
 

D D’ 
mp

np qp
jscr dlD’

D


qp A dlD’
D

 0  (12.7) 

since both the screening current jscr and the vector potential A point along the 
y direction, i.e. are perpendicular to the path D’D; 



318 SUPERCONDUCTIVITY 

»  the phase differences between points D’ and E’, or between points F’ and C’, 
where the screening currents are zero, reduce the circulation to that of A between 
these points. As we are in a region where the vector potential has reached its  
asymptotic values, they can be written simply as 

 
 

D’ E’ 
qp A dlE’

D


qp yAy (S2)  (12.8) 

 F’ C’ 
qp A dlC’

F’


qp yAy (S1). (12.9) 

 
Figure 12.4 - Points of reference for the junction 

C and D are directly opposite each other across the insulating layer with ordi-
nate 0, as are F and E but with ordinate y. Each point C’, D’, E’ or F’ is located 
at the same y coordinate as C, D, E or F, respectively, but is well beyond the 
LONDON penetration depth, in a region of zero magnetic field and current. 

Therefore, since the circulation of the screening current density over the whole 
circuit C’D’E’F’ vanishes, and since from relation (12.2), that of A is simply 

 
 

qp A dl 
qp Bext ( 1  2  d) y  (12.10) 

the phase difference (12.6) between points situated on each side of the insulator at 
ordinate y reduces to 

 ( y)  (0)  2
0

 Bext D y  (12.11) 

where 
 D  d  1  2   (12.12) 

appears as an effective thickness, in the sense that in the calculation we could have 
taken Bext as a uniform value for the magnetic field across it. D is called the “mag-
netic thickness” of the junction. 
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We call J the flux of the magnetic field that crosses the whole of the junction from 
 a/2 to  a/2, i.e. the insulating layer plus the LONDON regions that develop on 

each side (see Fig. 12.4), 
 J  Bext Da.  (12.13) 

The expression for the phase difference at ordinate y then becomes 

 ( y)  (0)  2 J

0

y
a

 (12.14) 

and the JOSEPHSON current density crossing the barrier at ordinate y (rela-
tion 10.14) can be written 

 
 
j x

J ( y)  jc sin (y)  jc sin (0)  2 J

0

y
a

.  (12.15) 

The total intensity of the JOSEPHSON current crossing the insulating barrier can be 
obtained by integrating the current density over the whole cross-section 

 
  
I  c jc sin ( y)d ya/2

a/2
 Ic sin J

0

J

0
sin (0).  (12.16) 

This means that for a given magnetic flux J, the junction can adjust its phase (0) 
in order to transport, in either direction, any value of the current intensity lying 
between 0 and an upper limit Imax given by 

 
 

Imax ( J )  Ic  sin J

0

J

0
.   (12.17) 

Except for zero field, where it takes its greatest value, the intensity Imax reduces to 
zero for field fluxes J equal to an integer number of fluxons. We remark that the 
profile of Imax in Figure 12.5 is formally identical to the diffraction figure of light 
by a slit under the FRAUNHOFER conditions (parallel incident beam and screen infi-
nitely distant). 

Figure 12.5 
Maximum intensity that can be borne 

by a short JOSEPHSON junction 
subject to a magnetic field 

The profile of Imax resembles a diffraction 
pattern of light by a slit under the 

FRAUNHOFER  conditions. Except at the 
origin, Imax is zero for flux values J 

equal to an integer number of fluxons. 

I I
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Qualitatively, the occurrence of a variation of the maximum intensity as a function 
of external field in agreement with the FRAUNHOFER diffraction pattern is the sig-
nature of the quality of a JOSEPHSON junction, in particular that it is uniform over 
its entire length. 

Current density profiles crossing the barrier and corresponding to different values 
of J are represented in Figure 12.6. 

I I II I

I I

 
Figure 12.6 - Profiles of the JOSEPHSON current density  

across the insulating layer of a short JOSEPHSON junction subject to magnetic field Bext 
(a, b, c, d) distribution of the JOSEPHSON current across the insulator when the intensity 
takes its maximum possible value Imax compatible with four different values for J . 
(d, e) for the same value of J the junction “adjusts” the phase (0) to the current  
intensity I that is injected: the maximum intensity for (d), or zero for (e). 

»  They are sinusoidal (see eq. 12.15) with the number of periods equal to the num-
ber of fluxons (whether or not it is integer) that J contains. The periodicity is 

 
 
Y  a 0

J
.  (12.18) 

»  The magnetic field flux threading a circuit of length Y (in the y-direction) and 
closed beyond the LONDON currents (Fig. 12.7) is one fluxon since by combining 
(12.13) and (12.18) we find 

 Y DBext  0 .  (12.19) 

»  Within the limits  Imax  I  Imax, the junction “adjusts” (0) to the intensity of 
the applied current. As illustrated in Figure 12.6 (d and e), this translates into a 
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shift of the profile of the JOSEPHSON current density since for the same number  
of fluxons and therefore of periods, the intensity vanishes in (e) whereas it is a 
maximum in (d). 

»  When J is an integer (non-zero) number of fluxons, shifting the current density 
has no effect and the intensity always vanishes: Imax ( J  n 0 0. 

 
Figure 12. 7 - Screening currents and JOSEPHSON currents in a short junction 

In the treatment of the short junction, the screening currents in the superconducting compo-
nents are dissociated from the JOSEPHSON currents, that are treated as a first-order perturbation. 
The magnetic field flux through the rectangle shown, whose length in the y direction is the  
periodicity of the current, and which closes far inside the superconducting blocks, equals 0 . 

12.3 - Short 0-  junction in a magnetic field 

From the definition (in section 10.8) of a  junction, we can derive the expression 
for the current intensity that crosses it from the relation (12.16), by simply chang-
ing Ic into  Ic. Therefore, for a  junction subject to a magnetic field we can 
write 

 I  Ic  sin J

0

J

0
sin (0)  (12.20) 

which means that 0 and  junctions cannot be distinguished experimentally by 
measuring the maximum current intensity. Indeed the phase (0) entering the rela-
tions (12.16) and (12.20) can, for each value of J, adjust itself to allow any current 
between the same extrema ± Imax( J) given by the relation (12.17). 
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More spectacular effects appear with hybrid junctions that are partially 0 and , as 
for example a 0-  junction, i.e. of type 0 over half its length and of type  over the 
other half (Fig. 12.8). Such a junction can be obtained by inserting as a barrier  
between the superconducting blocks, ferromagnetic layers with appropriate thick-
nesses over each section (see section 10.8.2 and Fig. 12.10a). 

 
Figure 12.8 - A 0-  hybrid JOSEPHSON junction 

A 0-  junction is of type 0 over half its length,  a/2 < y < 0, and of type  
over the other half 0 < y < a/2. Such a junction can be constructed by choos-
ing the appropriate thicknesses of the ferromagnetic layers for each part. 

The JOSEPHSON current density across the insulating layer as we move along the 
y axis is then: 

» for a
2
 y  0   jx

J   j c sin 1( y) 2( y) ,  (12.21a) 

» for 0  y  a
2

  jx
J  j c sin 1( y) 2( y)  (12.21b) 

and the total current across the junction is obtained by integrating the current densi-
ty over the whole cross-section 

  I
[0- ]  c jc sin ( y)d ya /2

0 jc sin ( y)d y0
a /2   (12.22) 

which leads to 

 

 

I [0- ]  Ic

sin2
2

J

0

2
J

0

cos (0)  (12.23) 



12 - JOSEPHSON JUNCTIONS IN A MAGNETIC FIELD 323 

and thus a maximum current 

 
 

Imax
[0- ]( J )  Ic Z

2
J

0
 (12.24a) 

with Z(w)  sin2w
| w |

.  (12.24b) 

The function Z(w) is zero at the origin and has two principal maxima for arguments 
w   0.73 where it has the value  0.725. It then vanishes when w  2n  and 
shows secondary local maxima near w  2(n  1)  (Fig. 12.9). 

 

Figure 12.9 - Graphical representation of the function Z(w)  sin2w / |w| 
The function Z(w) is zero at w  0, has two principal maxima 
of height  0.725 near ± 0.73, and is zero when w  2n . 

This behavior has been shown experimentally by WEIDES et al. 2 for junctions  
of Nb/Al/Al2O3/Ni60Cu40/Nb where the borderline between 0 and  is situated at 
the thickness of the ferromagnetic NiCu layer of 5.2 nm and which shows the  
same values of critical current densities for layer thicknesses of d (0)  5 nm  
and d ( )  5.5 nm (Fig. 12.10a). The measured currents Imax of a 0 junction, 
a  junction and finally a 0-  junction, all with the same geometry (Fig. 12.10b) 
display behavior consistent with the predictions of relations (12.17) and (12.24). As 
well as the positions of the maxima and minima, the relative intensities Imax of the 
0 and  junctions on the one hand and the 0-  on the other are as expected. In par-
ticular the ratio between the intensity of the two principal peaks of the 0-  junction 
and the central peak of the 0 or  junctions is close to 0.725. 

                                                        
2 M. WEIDES et al. (2006) Phys. Rev. Lett. 97, 247001. 
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I I

 
Figure 12.10 - Critical current Ic of a 0-  junction 

(a) The type and critical current of a Nb/Al/Al2O3 /Ni60Cu40 /Nb junction at T  2.65 K 
as a function of the thickness d of the ferromagnetic layer (b) Maximal intensities in 
JOSEPHSON junctions that are purely of type 0 (5 nm), purely  (d  5.5 nm) and 0- . 
[From WEIDES et al., 2006, © The American Physical Society, with permission].1 

Measurements made on triple junctions of type 0/ /0 or periodic junctions 
0/ /0/ /0/  confirm this analysis.3 

12.4 - Introduction to the JOSEPHSON penetration depth 

In all of the preceding discussion we assumed that the JOSEPHSON current did not 
perturb the screening currents flowing on each side of the junction. Neither did it 
modify the magnetic field inside the insulating layer, which remained equal to Bext. 
In fact, when the junction ceases to be short, this is no longer true. The JOSEPHSON 
current crosses a longer insulating section and the magnetic field it creates is no 
longer negligible compared to Bext. The local magnetic field in the insulating layer 
deviates from Bext and it is no longer valid to treat the screening currents and the 
JOSEPHSON currents separately. 

12.4.1 - General equations 

Consider now the magnetic field Bz(y), the current density jx(y) at position y of  the 
insulating layer, and the phase difference (y) between points on each side of the 
insulator for the same value of y. These quantities are related to one another by 
three equations:  
»  the JOSEPHSON equation 

   jx (y)  jc sin ( y);  (12.25) 

»  an equation derived from the relation (12.11), giving the variation of  as a func-
tion of y when the field in the center of the insulator is B(y) instead of Bext 

                                                        
3 C. GÜRLICH et al. (2010) Phys. Rev. B 81, 094502. 
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 (y)
y

 2
0

Bz (y)D;  (12.26) 

»  the MAXWELL’s equation that relates the magnetic field to the current density 

 Bz (y)
y

 0 jx (y).  (12.27) 

Combining the three leads to the equation of FERRELL and PRANGE 4 

 
2 ( y)

y2  sin ( y)

J
2

 (12.28) 

where 
  

J 
0

2 0 D jc
or 2 0 J jc 

0
D J

.  (12.29) 

J is on a scale of millimeters, much greater than the LONDON penetration depth 
since with D  50 nm, it is of order 0.2 mm for jc  10 A cm 2 and 0.02 mm for 
jc  1000 A cm 2. 

12.4.2 - Behavior in very weak fields 

When  is small, sin    and equation (12.29) becomes 

 
2 ( y)

y2  ( y)

J
2

 (12.30) 

that, using (12.27) and (12.28), leads to 

 
2 jx ( y)

y2 
jx ( y)

J
2    (12.31a) 

 
2 Bz ( y)

y2 
Bz ( y)

J
2 .  (12.31b) 

These expressions are similar to equations (2.27), the only difference being substi-
tution of the JOSEPHSON penetration depth J for the LONDON penetration depth L. 
With the same equations and similar boundary conditions 

 
 
Bz

a
2

 Bz
a
2

 Bext  (12.32) 

the profiles of magnetic field and the current density within the insulating layer 
placed in an external field (Fig. 12.11) are identical to those found for a layer sub-
jected to an applied field (section 2.4.4, eq. 2.28) namely, 

                                                        
4 R.A. FERRELL & R.E. PRANGE (1963) Phys. Rev. Lett. 10, 479. 
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  Bz (y)  Bext
cosh y

J

cosh a
2 J

; jx (y)  Bext

0 J

sinh y
J

sinh a
2 J

.  (12.33) 

 
Figure 12.11 - Magnetic fields and current densities within the insulating  

layer of a long JOSEPHSON junction subject to a small external field Bext 
The magnetic field and screening current decrease  

exponentially over the JOSEPHSON penetration depth J . 

 Case of a long junction 

When a  J (Fig. 12.11a), the magnetic field and the current density in the insu-
lating layer decrease exponentially starting from the lateral surfaces (y   a/2) over 
the characteristic length J: 

 Bz (u)  Bexte
u

J ; jx (u)   Bext

0 J
e

u
J  (12.34) 

where u is the distance measured from the edge of junction (a/2 or  a/2). The cur-
rent density jx(u) then appears as a screening current for the magnetic field in the 
insulator. 

So in weak fields the LONDON currents that develop laterally, over thicknesses of 
1 and 2, to screen the core of the superconducting material extend as JOSEPHSON 

currents that are localized at the edges of the junction. We then have the configura-
tion of Figure 12.12: the screening currents that are concentrated over a length 1  
in the upper part of the first block spread out over a length J of the junction  
before becoming more concentrated within the second block over a length 2. The 
currents flow back in the lower part in the opposite sense. J, which appears as the 
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penetration depth of the magnetic field in the insulating layer, is called the 
“JOSEPHSON  penetration depth.” 

9 

 
Figure 12.12 - Penetration of the magnetic field within  

a long JOSEPHSON junction in the MEISSNER regime 
The screening currents localized over penetration depths 1 and 2 in the supercon-
ductors spread out in the junction over the JOSEPHSON penetration depth J . This has 
the effect of screening the magnetic field not only in the superconducting blocks, but 
also within the insulating layer (d      J ). The magnetic field penetrates laterally into 
the superconductors over lengths 1 and 2 , and in the insulator over a distance J. 

Critical magnetic field 

Since the current density is greatest in the immediate proximity of the surface and 
since it cannot exceed the critical current density jjc of the junction, the highest  
external magnetic field that can be screened is 

 
  
BcJ

*  0 jc J 
0

2 J D
.  (12.35) 

It remains for us to see whether this last relation is compatible with the assumption 
of small  that lead to equations (12.31). According to (12.25), the phase differ-
ence  takes its maximum value at y   a/2, with a value obtained by integrating 
equation (12.27). As B vanishes after a few times the JOSEPHSON penetration depth, 
it can be written 

 ( y  a/2)  2 D
0

B(u)du0 
2 D J

0
Bext .  (12.36) 
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This equals 1 when Bext  B*
cJ, which is beyond the validity of the approximation 

sin    that allowed equation (12.30) to be derived, so that the exponential  pro-
files of Bz(y) and jx(y)  are valid only if Bext is a small fraction of B*

cJ. We shall  
return to this issue in section 12.5. 

Limiting case of a short junction 

When a  J, we are in a situation formally similar to that of a very thin slab de-
scribed in Chapter 2: the magnetic field penetrates into the whole junction 
(Fig. 12.13a, see also Fig. 2.6) and the current density (screening current for the 
insulating layer) that crosses the junction is insignificant (Fig. 12.13b). This is the 
hypothesis we formulated initially to treat the short junction. 

 
Figure 12.13 - Magnetic field and current density within a short JOSEPHSON  

junction (a  J) subject to a weak external field Bext (Bext < 0 /2 D J) 
The screening currents are weak and the magnetic field penetrates to the core of the insulating layer. 

12.5 - Long JOSEPHSON junction in a high magnetic field 

12.5.1 - Mechanical analogy 

When the externally applied field is increased and  is no longer sufficiently small, 
we must come back to the FERRELL-PRANGE equation (12.28) whose general solu-
tion makes use of complete elliptical integrals. 5 It is, however, possible to under-
stand the behavior of the junction without complex mathematical developments by 
considering its formal analogy to the movement of a rigid pendulum consisting of a 
mass M fixed at the end of a lever of length L, which can rotate without damping in 

                                                        
5 C.S. OWEN & J. SCALAPINO (1967) Phys. Rev. 164, 538. 
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a vertical plane. Its equation of motion is given by the same FERRELL-PRANGE 
equation 

 
2 (t)

t2  2 sin (t) with  g
L

 (12.37) 

where (t) is the angle between the stem and the z axis, that is directed vertically 
upwards, unlike the mechanical analogy of Chapter 10 where it was directed 
downwards. 

By comparing the equations (12.25) to (12.28) with equation (12.37) and the equa-

tions of mechanics, including the dynamical law 
 

P  ML2 d2

dt2 , where P is the 

torque exerted by the weight of the pendulum, we have the equivalences of  
Table 12.1. 

Table 12.1 - Correspondences between quantities related to a JOSEPHSON junction 
in an external field and the quantities related to the rigid pendulum of Figure 12.14 

Mechanical system JOSEPHSON junction 

Inverse frequency of oscillation of the 

pendulum 
 

1  L
g

 JOSEPHSON penetration depth J 

Time t y coordinate 

Angular displacement (t) Phase (y) 

Angular velocity (t)  d
dt

 Magnetic field  Bz ( y)  0

2 D
d
dy

 

Torque exerted by the pendulum 
p (t)  c sin (t) 

Current density through the insulator 
jx (y)  jc sin (y) 

Critical torque c   MgL Critical current density jc 

Interval in time  
between  /2 and /2 

Length of the junction a 
between  a/2 and a/2 

Number of swings during a time  Number of fluxons across the junction 

D

0
Bz ( y) d y

a /2

a /2

 1
2

d
dy

d y
a /2

a /2

D

0
Bz ( y) d y

a /2

a /2

 1
2

 a
2  a

2 
 

Constraints on the initial and 
final angular velocities  

(  /2)  ( /2)  ext  

Boundary conditions determined  
by the external magnetic field 
Bz (a/2)  Bz ( a/2)  Bext  
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Figure 12.14 
Mechanical analogy:  
JOSEPHSON junction / rigid pendulum 
The equation governing the profile of the 
phase difference (y) between points 
situated on opposite  sides of the insulat-
ing layer of a JOSEPHSON junction subject 
to an applied magnetic field Bext is anal-
ogous to the time-dependent equation 
of the angular coordinate (t) of a rigid 
pendulum subject to  initial and final 
angular velocities ext (see the complete 
set of correspondences in Table 12.1). 

In addition to the equation (12.37), the movement of the pendulum satisfies the 
condition of conservation of energy, 
 Ekin  Epot  Constant  (12.38) 

where Ekin and Epot are the kinetic and potential energies respectively, with zero of 
the potential taken when the pendulum is horizontal 

 
 
Ekin 

1
2

ML2 2 Epot  MgLcos  (12.39) 

The equivalence y  t leads us to associate to the length a of the junction (that 
extends between  a/2 and  a/2), the time interval  during which (between   /2 
and  /2) the pendulum moves. The boundary condition (12.32) corresponds in the 
pendulum analogy, to the constraint that the initial and final angular velocities be 
identical:  (  /2)  ext. 

Thus for a junction in applied external field Bext, the phase variation (y) in y is 
formally identical to the variation in time of the angle (t) of a pendulum to which 
is given, at time t    /2 when it is at an initial angle (   /2)   

0, an angular 
velocity ext such that it passes over the top and continues, so that at time t    /2  
it is at the angle (  /2)  0 with the same angular velocity ext. 

12.5.2 - Special movements of the pendulum 

Among the many types of movement of the pendulum, we shall look at two special 
scenarios. 

First scenario 

By appropriate choices of 0 and ext, the pendulum reaches the top with a very 
small angular velocity and as a result stays there for a very long time nearby, before 
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dropping to its final position (without making any complete turns). Taking the ki-
netic energy to vanish at the top (cos   1), energy conservation is expressed as 

 1
2

ML2 2  MgLcos  MgL  (12.40) 

and two limiting cases can be imagined: 
»  Case 1: (t) is small, cos   1  2/2 and the equation (12.40) becomes, choosing 

the negative value of the square root that appears, 

  d
dt

  (12.41) 

whose solutions: 

 0 e (t /2)

 ext e (t /2)

p  M g L 0 e (t /2)

 (12.42a) 

describe the behavior of the pendulum as it swings up. Taking the positive value 
of the square root provides the equations of motion for the swing down. 

 

 0 e (t /2)

 ext e (t /2)

p  M g L 0 e (t /2).
 (12.42b) 

»  Case 2: The initial angle  0 is equal to  , i.e. the pendulum is launched from 
its lowest position with the angular velocity ext  c  2  just sufficient for it to 
arrive at the highest position with zero velocity (relation 12.39). The evolution of 
the angular velocity   d  /dt and of the torque p of the pendulum are intuitive-
ly understood in this case, and are qualitatively presented in Table 12.2 and 
summarized in Figure 12.15. 

Table 12.2 -  Time dependence of the angular velocity and the torque acting on a rigid pendu-
lum launched from its lowest position at time t     /2 with angular velocity  ext   2 , such 
that at time t     /2 it returns to the same position after having made one complete turn 

Position of the pendulum 
(t ) 

Angular velocity 
(t ) 

Torque acting on the 
pendulum P(t ) 

Initial position: the lowest point 

t 
2 2

 0      
ext  c  2  P  0  

Sequence (a):  (t) 
2

 Decreases rapidly Increases rapidly 

Pendulum is horizontal 
 


2

  2  P  MgL  
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Sequence (b): 
2
 (t)  0  Decreases slowly Decreases slowly 

Top position t  0    0 
0  

Stays for a long time P 0  

Sequence (c): 0  (t) 
2

 Increases slowly Increases slowly 

Pendulum is horizontal 
 


2

 
  2  P  MgL  

Sequence (d): 
2
 (t)   Increases rapidly Decreases rapidly 

Final position: at the lowest point 

t 
2 2

 0   
ext  c  2  P  0  

 
Figure 12.15 - Schematic representation of the time dependence of the angular 
velocity and the torque acting on a rigid pendulum launched from its lowest 
position at time t    /2 with angular velocity ext   2  (Table 12.2) 

Second scenario 

The initial angular velocity ext exceeds 2  so that the pendulum passes over the 
highest position with non-zero angular velocity and in addition the time  is suffi-
cient that, like a sling, it can make several turns. In this case we have the following: 
»  the angular velocity (t) is periodic between t =  /2 and t = +  /2; however its 

oscillations are asymmetric around a value close to ext, since (t) is smaller 
near the highest point than it is at the lowest; 
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»  the torque P(t) oscillates around 0 asymmetrically with the same period between 
the extrema  MgL ( c); 

»  the angular position always increases, but non-linearly. 

In the extreme case where the initial velocity becomes very great, the difference in 
potential energy between the high and low positions becomes negligible compared 
to the original kinetic energy. The angular velocity approaches a sine wave with an 
amplitude that becomes weaker and weaker, and a period that tends towards 
T  2 / ext. The torque also becomes sinusoidal with an amplitude that remains 
equal to MgL. The variation of the angular position approaches linearity. 

12.5.3 - Long JOSEPHSON  junction in the MEISSNER regime 

This is the equivalent of the first scenario of the mechanical system and we find the 
two limiting cases: 
»  Case 1 is that of very weak fields with solutions (12.34) equivalent to the solu-

tions (12.42) of the linearized FERRELL-PRANGE equations. To verify this it suf-
fices to make the substitutions of Table 12.1 into (12.42). 

»  Case 2 is when the external magnetic field takes the maximum value BcJ compati-
ble with the MEISSNER regime. We then find in Table 12.3 the different sequenc-
es of Table 12.2. 

Table 12.3 - Limit of the MEISSNER regime 
Profile of the magnetic field and the JOSEPHSON current along the insulating layer 
of a JOSEPHSON junction subject to an external magnetic field Bext = BcJ. These pro-
files are to be compared to the time dependence of the angular velocity and the 
torque for a pendulum given an initial angular velocity ext  2  (Table 12.2). 

Phase 
(y ) 

Magnetic field  
across the insulator Bz(y ) 

Current across 
the insulator jx(y ) 

Edge of the junction:
 
y  a

2
   B

ext  BcJ  2 B*
cJ  j  0 

Sequence (a): 
 

 
2

 Decreases rapidly Increases rapidly 
(in absolute value) 

 


2
 

 
B  2

2
BcJ  j   jc 

Sequence (b): 
2
  0  Decreases slowly Decreases slowly 

Center of the insulator y  0   0 B  0, stays small  
over a large distance j  0 

Sequence (c): 0  
2

 Increases slowly Increases slowly 
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 

2
 B  2

2
BcJ  j   jc 

Sequence (d): 
2
   Increases rapidly Decreases rapidly 

Extremity of the junction: 

y  a
2

   B
ext  BcJ  2 BcJ

*
 j  0 

The different sequences of the profiles of Bz(y) and jx(y) obtained by calculations 
for a junction of length 10 J are easily identifiable on Figure 12.16. 

 
Figure 12.16 - Limit of the MEISSNER regime 

Profiles of the magnetic field and of the JOSEPHSON currents, in the limit of the MEISSNER regime 
(Bext = BcJ), across the insulating layer of a long JOSEPHSON junction described in Table 12.3. The 
sequences a, b, c and d are the equivalents of those shown with the same letters on Fig-
ure 12.15. [From OWEN & SCALAPINO, 1967, © The American Physical Society, with permission]. 5 

Given the equivalence with the mechanical system, and by taking larger and larger 
angles 0 we can easily convince ourselves of the dependence of the MEISSNER 
regime with field, as presented in Table 12.4. 
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Table 12.4 - Long JOSEPHSON junction in the MEISSNER regime 
Dependence on external magnetic field of the profiles of magnetic fields and of the current 

density along the insulating layer of a long JOSEPHSON junction in the MEISSNER phase 

Bext 2
2

BcJ  B and j decrease exponentially starting from the edges of the  
insulator with the length-scale J. 

 
Bext  2

2
BcJ  

B and j stay with maxima at the extremities but their profiles 
deviate from decreasing exponential forms. 

 
Bext  2

2
BcJ  

The greatest field for which j has a maximum at the  
surface with value jc. The magnetic field flux across the 
 junction is equal to half of a fluxon. 

 
2

2
BcJ  Bext  BcJ  

The current density at the surface decreases. A bell-shaped 
curve develops with a maximum that remains at jc and 
shifts to within the insulator. 

Bext  BcJ  
The maximum external magnetic field compatible with  
the MEISSNER regime. The current density becomes zero at the 
surface. The flux across the junction is equal to one fluxon. 

The critical JOSEPHSON field beyond which the MEISSNER regime can no longer 
survive is, according to Table 12.3, 

 
 
BcJ  2 0 jc J 

0

J D
 (12.43) 

which is double the value B*
cJ (of relation 12.35) derived from linearization  

of the FERRELL-PRANGE equation, but with very different profiles of Bz(y) and 
jx(y). With D  50 nm, BcJ is a magnetic field close to 10 4 T for jc  10 A cm 2 and 
10 3 T for jc  1 kA cm 2. 

12.5.4 - Long junction in the vortex regime 

This corresponds to the second scenario of the mechanical analogy. Translated into 
the language of the junction, it indicates that when Bext  BcJ, the current density 
oscillates periodically but asymmetrically around 0 between the extreme values 
 jc, and the magnetic field oscillates asymmetrically around a value close to Bext 
and that the phase increases non-monotonically. 

In the limit of high external fields, both the oscillations of jx around 0, and of Bz 
around Bext, tend towards sinusoidal functions. The amplitude of oscillation of 
Bz(y) decreases, and the variation of (y) with y approaches a straight line. Trans-
posing the relation T  2 / 0, the period common to both the magnetic field and 
the current density tends towards 

 Y 0

DBext .  (12.44) 
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The currents that cross the insulating layer close inside the LONDON regions of the 
superconductors surrounding them, thereby forming a lattice of whirlwind currents 
in one dimension, that are called the “JOSEPHSON vortices” (Fig. 12.17). The mag-
netic field BcJ corresponds for the junction to the critical field Bc1 of type II super-
conductors. The number of fluxons that penetrate the junction then equals the num-
ber of periods (integer or fractional) that develop: it increases with more intense 
Bext and larger values of a. 

Some precautions should, however, be taken when using the term “vortices” in this 
context since they do not have a normal core, even if they surround regions where 
the density of superconducting electrons is reduced, and we should not expect to 
see the equivalent of Bc2. 

 
Figure 12.17 - Magnetic field within the insulating layer  

of a long JOSEPHSON junction in the vortex regime 
(a) The magnetic field oscillates around a value close to Bext with an amplitude that  
decreases as Bext increases. (b) The current density oscillates around zero between  jjc 
with a shift in phase of a quarter period. (c) A schematic view of the currents that cross the 
junction and close up laterally. They form a one-dimensional lattice of JOSEPHSON vortices. 

We note too that while the relation (12.44) resembles (12.19), it refers to a very 
different situation. In section 12.2 we were discussing the JOSEPHSON currents gen-
erated by a current I injected into a short junction under applied magnetic field, 
whereas here the vortex currents are created in a long junction subject simply to a 
magnetic field. 
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12.5.5 - Isolated JOSEPHSON vortex 

If in principle the vortex regime only appears when Bext  BcJ, it sometimes hap-
pens that vortices can stay in a long junction for Bext  BcJ. In the extreme limit, it 
is possible to see a single isolated vortex appear in an infinitely long junction, even 
in the absence of an external field. 

The profile of such a vortex centered at y  0, in an infinitely long junction, can be 
calculated analytically without great difficulty. Far from the center of the junction, 
the current across the insulator vanishes. 

In the special case where this phase difference changes by 2  between y    and 
y    with 

 ( )  0 ; ( )  2 ; (0)  ;
y

( )  0  (12.45) 

equation (12.28) has a solution 6 

 (y)  4 tan 1 e
y
J   (12.46) 

and  passes from 0 to 2  over a few JOSEPHSON penetration depths around y  0 
(Fig. 12.18a). 

By virtue of the equation (12.27), the profile of the magnetic field along the insula-
tor is found as 

 Bz (y)  0
2 D

(y)
y

 0
D J

1
cosh(y/ J )

 (12.47) 

and appears as a bell shape (Fig. 12.18b) of width  4 J centered around y  0 with 

 Bz (0)  0
D J

 BcJ  (12.48) 

which produces a magnetic field flux across the junction (including both insulating 
and superconducting materials) equal to one fluxon: 

            D Bz (y) dy  0
2

(y)
y



dy  0
2

( ) ( )  0  (12.49) 

The current density across the insulator can be found from the equation (12.28) 
and, using (12.25), is written 

 jx ( y)  1
0

Bz ( y)
y

 0

0D J
2

sinh(y/ J )
cosh2(y/ J )

 (12.50a) 

which is also 

                                                        
6 This solution can be found by proceeding as described in Appendix 12, by adapting the 

boundary conditions to the condition that here the junction is completely of type 0. 
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jx ( y)  2 jc

sinh(y/ J )
cosh2(y/ J )

jc sin ( y).   (12.50b) 

This current density is zero at y  0, vanishes asymptotically at infinity, and shows 
two maxima in absolute value of opposite signs  jc situated at displacements  y0 
from the vortex center, where y0 satisfies (Fig. 12.18c), 

 sinh y0

J
 1 or y0 0.88 J .  (12.51) 

The mechanical analogy of this situation is the pendulum which is released with 
zero velocity at its highest point at time t    (   0), makes one complete turn 
so as to come back to the highest point at time t    (   2 ), after having passed 
the lowest point with the maximum angular velocity at time t  0. 

Profiles as a function of the position  of 
(a) the phase jump ( ) between points 
situated on each side of the insulating layer, 
(b) the magnetic field ( ), 
(c) the current density ( ).  

Figure 12.18 - Isolated vortex at the center of an infinitely long  
 JOSEPHSON junction at zero external field 
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If the pendulum had a long, but not infinitely long, time available it would need to 
be launched with a minimum angular velocity ext  2  in order to complete a 
swing between t   /2 and t   /2. In the language of the junction, an external 
magnetic field Bext  BcJ would be necessary to allow a JOSEPHSON vortex to stay 
within a junction that is long, but not infinitely so. 

12.6 - Current transport in a long JOSEPHSON junction 

12.6.1 - Long junction carrying a current 

At the beginning of section 12.2, we assumed (see relation 12.4) that in zero exter-
nal field the current density carried was uniformly distributed across the junction. 
This was, in fact, using the hypothesis of a short junction and we should now return 
to the problem with the general equations (12.26 to 12.28) or else, if the current is 
sufficiently small, with their linearized forms (12.30 and 12.31). 

In fact, the current distribution will depend on the geometry of the junction. The 
simplest to analyse is the “in line JOSEPHSON Junction” (Fig. 12.19) where the cur-
rent circulation in the superconductors electrode creates a magnetic field  Bel 
along the z direction 7 at y  a/2 and y   a/2. By application of AMPÈRE’s law, 
and taking the thickness e of the electrode to satisfy e  c, 

 Bel(a/2)  0
I

2c
and Bel( a/2)  0

I
2c

.  (12.52) 

 
Figure 12.19 - In-line JOSEPHSON junction  

The current crosses the isolating layer along the x direction. By applica-
tion of AMPERE’s law along the dotted line (e  c), the magnetic field 
created by I circulating in the superconducting electrodes is  0I/2c. 

which in the absence of an external field leads to the boundary conditions 

 Bz ( a/2)  0
I

2c
and Bz ( a/2)  0

I
2c

.  (12.53) 

                                                        
7 R. GROSS and A. MARX 

http://www.wmi.badw.de/teaching/Lecturenotes/AS/AS_Chapter 2.pdf 
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With the linearized form of the equation (12.30), the current density is then distrib-
uted according to the relation 

 jx ( y)  I
2c J

cosh( y/ J )
cosh(a/2 J )

 (12.54) 

This form, for sufficiently large a, becomes a decreasing exponential of range J 
starting from y   a/2 and the critical current intensity is determined by jy

 ( a/2) 
reaching jc 
    IcJ

*  2c J jc .  (12.55) 

As we saw previously (in section 12.4.3) this value of I*
cJ is just an estimate since 

it was calculated beyond the range of validity of the approximation sin   . An 
exact calculation, for a  10 J, starting from the FERRELL-PRANGE equation and 
the boundary conditions (12.53), leads, at the limit of the MEISSNER regime, i.e. 
when the current density somewhere approaches jc, to the profiles of Figure 12.20. 

I

 
Figure 12.20 - Profile of the critical JOSEPHSON current 5 

The profile of the maximum current density in the MEISSNER regime through  
a long JOSEPHSON junction has the form of two bell shapes of maximum jjc ,  
localized at a distance of the order of J from the edges. The ranges d and c 
are equivalent to the sequences of the same name in Figure 12.15. The ranges 
c’ and d’ correspond to the same sequences “followed” in the opposite order. 
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In it we see that the current density increases from the surfaces, where it is zero, to 
reach a maximum value equal to jc when the induced magnetic field becomes equal 
to  2 /2BcJ , having decreased in absolute value from the external surfaces where 
it has its maximum absolute values of  BcJ . In the mechanical analogy of  
Figure 12.15, the pendulum is launched at the initial time t   /2 from the lowest 
position (   ) where it is subject to a vanishing torque P with velocity 

/2
ext  2  (sequence d’ equivalent to d but followed in the reverse order). It 

passes the horizontal position with a critical torque c and then approaches the 
summit very slowly (sequence c’ equivalent to c followed in the reverse order) 
close to which it remains for a long time. It then returns by the same path with an 
increasing angular velocity c, passes once again to the horizontal state where it 
feels the torque c and comes back to the lowest position d with zero torque P at 
time t  /2 and with angular velocity /2

ext  2 .  

The greatest current IcJ (the critical JOSEPHSON current intensity) that the long 
junction can withstand corresponds to 

 
 
Bz (a/2)  0

IcJ
2c

 BcJ and Bz ( a/2)  BcJ  (12.56) 

or, when the junction is “infinitely” long, 

  IcJ  4c J jc .  (12.57) 

Once again, this is double the maximum of current calculated starting from the 
linearized equation. 

12.6.2 - Long JOSEPHSON current subject to a magnetic field and 
carrying a current 

MEISSNER regime 

In the presence of an external field, the fields at the edges of the insulator are 

 Bz (a/2)  Bext  0
I

2c
and Bz ( a/2)  Bext

0
I

2c
.  (12.58) 

The system loses any symmetry it may have had, since in general the magnetic 
fields at the edges are neither equal nor symmetric. The maximum current, 
Imax (Bext), that the junction can carry is attained when the magnetic field reaches 
BcJ on one or other of the surfaces, 

 
 
Bext  0

Imax (Bext )
2c

 BcJ  (12.59) 

and therefore Imax (Bext )  IcJ
2cBext

0
 IcJ 1 Bext

BcJ
 (12.60) 

which is represented by the straight line labelled [0/1] in Figure 12.21. 
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I I

 
Figure 12.21 - Maximum current across a long JOSEPHSON junction subject to a magnetic field  

The [n/n+1] mode is defined to be the solution with flux across the junction lying between n and 
n+1 fluxons. Each mode has a maximum current. The modes overlap and the maximum possible 
current is the highest of the maxima of each of the modes for a given field. The points marked at 
Bext = 0 correspond to the isolated JOSEPHSON vortex ( Imax

[1/2]  0 , Fig. 12.18b) and to the limit of 
current transport in the MEISSNER regime (

 
Imax

[0/1]  IcJ , Fig. 12.20). The profiles of the magnetic 
field and current density corresponding to the point ( Imax

[0/1]  0  ; Bext = BcJ ) of the MEISSNER phase 
are as shown in Figure 12.16 (in fact, for this point Bext is slightly less than BcJ because of the finite 
length of the junction). The continuous lines are from Ref. 5 and the points from Ref. 8. 8 

Vortex regime 

Under an applied external field Bext, the FERRELL-PRANGE equation in fact has 
several solutions, each having a maximum possible current. For example, in zero 
field there is the solution with the field uniformly zero and also the single vortex 
solution of Figure 12.18b. Following OWEN and SCALAPINO, the solutions are clas-
sified according to the number of fluxons that cross the junction. A solution is of 
the mode [n / n  1] if the junction carries between n and n  1 fluxons, i.e. the cur-
rent has between n and n  1 periods. 

It can be shown that when a current is superimposed on the magnetic field, each 
mode [n / n  1] has its own intensity curve with maximum value 

 
Imax

[n/n1]  (see 
Fig. 12.21). However as we see in Figure 12.21, where the length of the junction is 
a  8.24 J, the modes can overlap. For example, [2/3] mode overlaps on the left 
the [0/1] [1/2] modes and on its right the [3/4] and even slightly the [4/5] mode. As 
a consequence, the maximum current intensity Imax that can cross the junction for 
an applied magnetic field Bext is given by the mode giving the highest value of in-
tensity 

 
Imax

[n/n1]  for this field (see the points of Figure 12.21). 

In fact, when there is a current we need to make a dynamical analysis since as in 
type II superconductors, a force acts on the vortices, which then move perpendicu-
larly to the current direction. 

                                                        
8 K. SCHWIDTAL (1970) Phys. Rev. B 2, 2526. 



12 - JOSEPHSON JUNCTIONS IN A MAGNETIC FIELD 343 

12.7 - Half fluxon at the 0-  connection 
of a hybrid JOSEPHSON junction 

The phenomenon of trapping of a half fluxon has excited particular interest during 
the last few years because of its occurrence at certain points of intersection of grain 
boundaries in YBaCuO. 

The calculations developed by XU et al. 9 show that such stable pinning is produced 
at the place where the  and 0 parts of an infinitely long 0-  junction meet (i.e. at 
y  0 for a junction of type 0 between y    and y  0, and of type  between 
y  0 and y   ). 

As we show in Appendix 12, the phase difference between the two superconduct-
ing blocks can be written: 

» for y  0 (y)  4 tan 1 e
y y0

J ,   (12.61a)  

» for y  0 (y)  4 tan 1 e
y y0

J   (12.61b) 

where y0 is the distance defined by relation (12.51). The magnetic fields, found 
from (y) by the relation (12.26), are of the form: 

» for y  0 Bz (y)  0
D J

1

cosh y y0

J

,  (12.62a)  

» for y  0 Bz (y)  0
D J

1

cosh y  y0

J

.  (12.62b) 

The field decreases as we go away from either side of the center of the junction, 
where it takes the value 

 Bz (0)  2
2

0
D J

 2
2

BcJ .  (12.63) 

The total magnetic flux across the junction equals, using the relation (12.49), 

 D Bz (y)d y
 0

2
( ) ( )  0

2
 (12.64) 

i.e. a half fluxon. The current density across the insulator, as deduced by (12.28) 
from Bz(y), is: 

» for y  0 

 

jx ( y)  2 jc

sinh y y0

J

cosh2 y y0

J

,  (12.65a) 

                                                        
9 J.H. XU et al. (1995) Phys. Rev. B 51, 11958. 
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» for y  0 

 

jx ( y)  2 jc

sinh y  y0

J

cosh2 y  y0

J

 (12.65b) 

making it discontinuous, with limiting values at the origin, 

  jx (0 )   jc .  (12.66) 

These different quantities behave as indicated in Figure 12.22 and as we can under-
stand from our previous discussion, the transitional region between the two parts is 
spread over a few JOSEPHSON depths. 

(a) Phase difference ( ) between points  
situated on either side of the insulator, 
(b) magnetic field ( ) in the insulator
(c) current density ( ) across the 
insulator near the connecting point 0-  
of a hybrid JOSEPHSON junction. 
The perturbation extends over a length 
of order of the JOSEPHSON depth to each 
side of the singularity.  

Figure 12.22 - Half fluxon around the connection between the 0 and  parts of a 0-  junction 10 

This half fluxon is in fact robust since it persists even if a current is driven across 
the junction. The calculation made by XU et al. shows that the profile of the  
                                                        
10 E. GOLDOBIN, D. KOELLE & R. KLEINER (2002) Phys. Rev. B 66, 100508. 
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maximum current density across the insulator of a 0 or  junction of length 20 J is 
as shown in Figure 12.23a, while that associated with a 0-  junction is, for the same 
conditions, as shown in Figure 12.23b. Since the current transported spreads over a 
distance J from the surfaces, and since the current associated with the half-fluxon 
spreads over a length J on each side of the point of attachment, there is no inter-
ference between the two components, provided the length of the junction is suffi-
ciently large compared to J. 

 
Figure 12.23 - Density profile of the maximum current transported in the MEISSNER regime

 9  
(a) in a 0 (or ) JOSEPHSON junction (b) in a 0-  JOSEPHSON junction of length 20 J 

Very qualitatively, the trapping of a half fluxon at the joining of the two parts of a 
0-  junction can be understood by gradually enlarging the 0 and  junctions of a 
SQUID circuit with two junctions of different nature (see section 11.6). The current 
and the magnetic field extend in the direction of the junctions over a distance that is 
the order of J (see relation 12.34 and Fig. 12.24). In contrast, in the perpendicular 
direction they extend over a distance of order the penetration depths . 

 
Figure 12.24 - Intuitive picture of the gradual transition of a current loop 
trapping a half fluxon in a hetero-junction SQUID circuit into the current 

distribution around the 0-  joint of a hybrid  JOSEPHSON  junction 
An rf-SQUID ring with two junctions, one of type 0, the other , spon-
taneously traps a half fluxon that persists if we “thicken” the circuit, 
until we finally join the 0 and  junctions to make a 0-  junction. 
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Appendix 12 
 
Phase slip between the superconducting blocks  
within an infinite 0-  junction 

A12.1 - The equations governing the junction 

We consider a hybrid JOSEPHSON junction of type 0 for y  0 and of type  for 
y  0 (see Fig. 12.8). Extending over a total length a, which we will take to its infi-
nite limit, it is subjected to an external magnetic field Bext without imposing any 
(transported) current. 

The equations obeyed by the phase differences (y) between the two blocks S1 and 
S2 are written (see expression 12.29): 

» for  y  0 
2 ( y)

y2   sin ( y)

J
2 ,  (12.67a) 

» for  y  0 
2 ( y)

y2  sin ( y)

J
2 .  (12.67b) 

The magnetic field Bx(y) is linked to the variation of the phase difference (y) by, 
(see relations 12.25 and 12.27), 

 
 
B  0

2 D
( y)
y

 0 jc J
2 ( y)

y
 (12.68) 

where the value D  d  1  2 (relation 12.12) is essentially determined by 1 and 
2, which makes it independent of the nature of the junction, even if d varies slight-

ly between the parts 0 and . The same is true for J that is related to D by (12.25). 

A12.2 - Boundary conditions 

First of all, (y) is continuous since, by the relation (12.68), any discontinuity 
would imply an unphysical (DIRAC) singularity of the magnetic field. 

Furthermore, far from the origin and in the absence of current, the phase of each 
junction tends asymptotically to the value minimizing the energy it would have if 
isolated (see sections 10.5 and 10.8.1), leading to the conditions 

 ( )  0 ( )  and
y

( )  0.  (12.69) 

Finally, by symmetry, 

 
2

at  y  0. (12.70) 
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A12.3 - Profile of the phase difference  

We consider the relation 
y y

2

 2
y

2

y2 .   (12.71) 

Using (12.67), this leads to: 

» for y  0 
y y

2

  2
y

sin ( y)

J
2 ,   (12.72a) 

» for y  0 
y y

2

 2
y

sin ( y)

J
2 ,   (12.72b) 

or, integrating over y: 

» for y  0 
y

2

 2

J
2 ( cos ( y)  C ),   (12.73a)  

» for y  0 
y

2

 2

J
2 (cos ( y)  C ).   (12.73b) 

Since: 
» for y    0 and cos 1,  

» for y    and cos 1,  

we have C  C   1 in (12.73), which leads to: 

» for y  0 
y

2

 4

J
2 sin2

2
,   (12.74a) 

» for y  0 
y

2

 4

J
2 cos2

2
.   (12.74b) 

With the condition 0    , only the positive roots are to be considered, so that: 

» for y  0 
d

2

sin
2

 dy
J

,  (12.75a) 

» for y  0 
d

2

cos
2

 dy
J

.  (12.75b) 
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Integrating gives: 11 

» for y  0 y  J ln tan ( y)
4

 D ,   (12.76a) 

» for y  0 y  J ln tan ( y)
4


4

 D ,  (12.76b) 

where the constants D  and D can be determined by fixing   /2 for y  0,  
so that 

 D  ln tan
8

 ln( 2 1)   (12.77a) 

 D  ln tan 3
8

 ln( 2 1).   (12.77b) 

Introducing a characteristic length y0 such that 

 e
y0

J  2 1 and e
y0

J  1
2 1

 2 1 (12.78) 

by subtraction of the two expressions, these correspond to 

 sinh y0

J
 1 

i.e. y0 0.88 J .  (12.79) 

We finally obtain: 

» for y  0 (y)  4 tan 1 e
y y0

J ,  (12.80a)  

» for y  0 (y)  4 tan 1 e
y y0

J  .   (12.80b) 

                                                        

11 dx
sin x

 ln tan x
2

 Constant and dx
cos x

 ln tan x
2


4
 Constant.  



NOTATION 

General rules 

Vectors: bold Roman characters; moduli of vectors: thin italic characters 
Physical variables (z):  z   local mean value; z   macroscopic mean value 
Operator A: Â  

Notation Meaning 

A Vector potential 

B Magnetic field  

B0 Magnetic field created by currents of a conductor 

Ba Magnetic field created by AMPÈRE currents 

Bext Magnetic field outside the sample 

B  Magnetic field tangent to the surface 

B  Local mean magnetic field  

Bc Critical magnetic field   

Bc1 , Bc2 Upper and lower critical magnetic field 

Bc3 Surface critical magnetic field  

Cvib Lattice specific heat per unit volume 

Cn
el Electronic specific heat in the normal phase  

Cs
el

 Electronic specific heat in the superconducting phase  

D  d  1  2 Magnetic thickness of a JOSEPHSON junction 

D(E) Quasiparticle density of states 

dv Nearest-neighbor distance between vortices 

E Electric field 

E Energy 

E 0 Energy stored in a “0” JOSEPHSON junction  

E  Energy stored in a “  ” JOSEPHSON junction  

EJ JOSEPHSON energy 

Ek Energy of a quasiparticle of wave-vector k 
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e Elementary charge (1.602 10–19 C) 

F , f Free energy (HELMOLTZ function), free energy density 

F  Bulk “LORENTZ” force density on vortices 

f   “LORENTZ” force per unit length of a vortex 

f  Average “LORENTZ” force per unit length of a vortex 

Fp  Bulk pinning force density of vortices 

f p  Average pinning force per unit length of a vortex 

fJ , J JOSEPHSON frequency, JOSEPHSON angular frequency 

f ( ) FERMI-DIRAC distribution function 

G(k) Electronic density of states with respect to wave vector, per spin state 

G( ) Electronic density of states with respect to energy, per spin state  

G( F) Density of states at the FERMI level per spin state 

G , g Free enthalpy (GIBBS function), free enthalpy density 

H Field H 

H0 Field H created by conducting currents 

Hm Demagnetizing field 

Hc Critical field 

Hc1 , Hc2 Lower and upper critical fields 

Hc3 Upper surface critical field H 

H , h Enthalpy, enthalpy density 

Ĥ  Hamiltonian operator 

h ,  PLANCK’s constant (   h/2 ) 

I Current intensity 

Ic Critical intensity in a wire (of a type I superconductor) 

Ic Critical intensity in a JOSEPHSON junction 

Ic Critical intensity in a wire (of a type II superconductor) 

Imax Maximum intensity borned by a JOSEPHSON junction  

Ir Re-trapping current intensity 

Jn (x) Integer BESSEL function of order n 

Iv (x) Modified BESSEL function of the first kind of order   

jv (x) Spherical BESSEL function of order   

J  Average current density 
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j Current density 

ja Amperian current density 

ja
surf , ja

vol Surface and bulk Amperian current densities 

jc Critical current density in a type I superconductor  

Jc Critical current density in a type II superconductor 

Jc
Bean Critical current density in the BEAN model 

jc Critical current density in a JOSEPHSON junction 

k Wave-vector of a particle in state  k  

 k  State  k , with spin up 

 k  ,  k  Pair state  

kB BOLTZMANN constant 

kc Cut-off wave-vector (BCS) 

kD DEBYE wave-vector 

kF FERMI wave-vector 

KJ JOSEPHSON constant 

Kv (x) Modified BESSEL function of the second kind of order   

L Length 

L Inductance 

L Latent heat  Mean free path of electrons in the normal state 

M Magnetic moment 

M Magnetization 

m Mass of an electron 

m p Mass of a COOPER pair (2m) 

m v Effective mass of a vortex 

N Demagnetization field factor 

N Total number of electrons 

NA AVOGADRO number 

Nstate Number of quantum states  

n Total electron density  

n n Density of normal electrons  

n p Density of COOPER pairs (ns/2) 
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n s Density of superconducting electrons  

n s  Density of superconducting electrons in the bulk 

n s(r) Local density of superconducting electrons  

n v Vortex density crossing a surface 

n Unit vector normal to the surface 

P Momentum 

P Power 

Q Quantity of heat 

q Vector in reciprocal space 

qe Charge of the electron (  e) 

qp Charge of the COOPER pair (  2e) 

R Electrical resistance 

R Radius 

r Length of the vector r 

r ,  , z Cylindrical coordinates 

r ,  ,  Spherical coordinates 

S Surface 

S Surface vector 

S , s Entropy, entropy density 

T Temperature 

Tc Critical temperature 

t Time 

U , u Internal energy, internal energy density 

u Unit vector 

u k Probability amplitude of “non-occupation” of a pair state  k  ,  k  

V Volume 

V Electric potential 

V Electric potential induced by flux change 

V , V̂  Interaction potential (scalar, operator) 

Vg Gap voltage 

Vk’k Matrix element in k space 

v Velocity 
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vF FERMI velocity 

vk Probability amplitude of occupation of the pair state  k  ,  k  

W Work 

w Work per unit volume 

x , y , z Cartesian coordinates 

c STEWART-MCCUMBER parameter of a JOSEPHSON junction 

L Screening factor of a SQUID circuit 

 SOMMERFELD constant 

q Response function 

 Laplacian operator 

 Superconducting gap 

 Increment/uncertainty of a quantity (according to context) 

x DIRAC function 

 Energy of an electron 

0 , 0 Dielectric constant and permittivity of the vacuum 

1 Energy of formation of a vortex 

F FERMI energy 

k Energy of a free electron in the state  k  

 Damping coefficient 

 Phase difference between two points in a condensate 

D DEBYE temperature 

r, t Phase of the wave function of the superconducting condensate  

  /  GINZBURG-LANDAU parameter 

J JOSEPHSON penetration depth 

 Penetration depth of the magnetic field  

L LONDON penetration depth 

k Energy of a free electron of wave-vector k  
with respect to the FERMI energy  

0 Coherence length at 0 K 

P PIPPARD length 

BCS BCS coherence length 

 Electrical resistivity 

ff Flux-flow resistivity of vortices 
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n Resistivity in the normal phase  

vol Charge density in the bulk  
m
vol Bulk density of magnetic charges 

 Electrical conductivity 
m
surf Surface density of magnetic charges 

surf Surface charge density 

p Wave function of a condensate of COOPER pairs 

k  Wave function of one electron 

kmkn Wave function of two electrons 

 Magnetic field flux 

0 Quantum of flux (fluxon) 

 Magnetic susceptibility 

k Amplitude of condensation in the pair state  k  ,  k  

 Angular velocity 

D DEBYE frequency 

p Plasma frequency of a JOSEPHSON junction 
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